Карликовая галактика. Карликовые галактики - маленькие, но впечатляющие

Мессье 32, или М32, относится к типу карликовых галактик эллиптической формы. Расположена в созвездии Андромеды. М32 обладает видимой величиной в 8,1 с угловым размером – 8 х 6 угловых минут. Галактика удалена от нашей планеты на 2,9 млн световых лет. По данным Equinox 2000, выведены следующие координаты: прямое восхождение 0 ч. 42,8 мин.; склонение +40 ° 52′. Благодаря этому галактику можно увидеть на протяжении всей осени.

Мессье 32 относится к двум эллиптическим галактикам спутников Великой Андромеды, которые можно наблюдать на предоставленных изображениях. По нижней кромке объекта М31 галактика М32 является самой близкой галактикой, в то время как объект М110 – самая отдаленная галактика по правой верхней кромке. М31 – большая галактика Андромеды, представлена ярким небесным объектом, допустимым для наблюдений невооруженным глазом. Мессье 31, Мессье 32 и Мессье 110 относятся к Местной группе галактик. В нее входят также галактика Треугольника и Млечный Путь.

На предоставленных изображениях видны несжатые фотографии всех трех объектов – М31, М32 и М110. Все фото были сделаны при помощи астрографа Takahashi E-180. Рядом находится изображение трехкратного увеличения центра галактики Мессье 32.

Объект был включен в каталог Мессье, однако его обнаружил французский ученый Ле Жантиль в 1749 году. Опираясь на данные передовых исследователей 2010 года, можно вычислить примерные данные об этой галактике. Расстояние от Земли до Мессье 32 составляет 2,57 млн световых лет, примерная масса варьируется в пределах 3000000000 масс Солнца, а диаметр достигает отметки в 6500 световых лет.

Наблюдения

М32 относится к малым галактикам, но имеет яркую эллиптическую форму. Когда любители рассматривают Туманности Андромеды, именно данный объект покажется им странным. Даже самый обычный телескоп покажет особенности диффузной природы галактики. Она находится по направлению в полградуса на юг от центра галактики М31. Если рассматривать М32 в среднего качества телескоп, можно увидеть звездообразное ядро и компактное, плавно спадающее по яркости овальное гало.

Соседствующие объекты из каталога Мессье

Первый сосед галактики М32 – его физический спутник Туманность Андромеды. Это спиральная сверхгигантская галактика. Второй соседствующей галактикой является эллиптическая М110, а третьей – М31, спутник, который находится по другую сторону от объекта Мессье 32.

Благодаря Карликовой галактике можно увидеть шаровое скопление G156. Оно принадлежит объекту М31. Лучшим инструментом для наблюдения послужит телескоп с апертурой в 400 мм.

Описание Мессье 32 в каталоге

Август 1764 года

Ниже пояса Андромеды на несколько минут располагается небольшая беззвездная туманность. В сравнении с поясом эта небольшая туманность имеет более тусклый свет. Ее обнаружил Ле Жантиль 29 октября 1749 года, а в 1757 году ее увидел Мессье.

Технические детали фотографии Мессье 32

    Объект: М32

    Другие обозначения: NGC 221

    Тип объекта: Карликовая эллиптическая галактика

    Позиция: Астрономическая обсерватория Бифрост

    Монтировка: Astro-Physics 1200GTO

    Телескоп: Гиперболический астрограф TakahashiEpsilon 180

    Камера : Canon EOS 550D (Rebel T2i) (светофильтрBaader UV/IR filter)

    Экспозиция: 8 x 300s, f/2.8, ISO 800

    Оригинальный размер фотографии: 3454 × 5179 pixels (17.9 MP); 11.5″ x 17.3″ @ 300 dpi

На изображении показана Карликовая галактика в созвездии Скульптор (Sculptor Dwarf Galaxy). Снимок был получен прибором Wide Field Imager, который установлен на 2.2-метровом телескопе MPG/ESO Европейской южной обсерватории в Ла-Силья. Эта галактика является одним из соседей нашего Млечного Пути. Но, несмотря на такое близкое расположение друг к другу, у этих двух галактик совершенно различные история возникновения и эволюции, можно сказать, что их характеры совершенно разные. Карликовая галактика в Скульпторе намного меньше и старее Млечного Пути, из-за чего она стала очень ценным объектом для изучения тех процессов, которые приводили к рождению новых звёзд и других галактик в ранней Вселенной. Однако, из-за того, что она излучает очень мало света, её изучение сильно затруднено.

Карликовая галактика в созвездии Скульптор относится к подклассу карликовых сфероидальных галактик и является одной из четырнадцати галактик-спутников, которые вращаются вокруг Млечного Пути. Все они расположены близко друг к другу в области гало нашей Галактики, которая представляет собой сферическую область, простирающуюся далеко за границами спиральных рукавов. Как следует из названия, эта карликовая галактика расположилась в созвездии Скульптора и лежит на расстоянии 280000 световых лет от Земли. Несмотря на её близость, она была обнаружена только в 1937 году с появлением новых мощных приборов, поскольку звёзды её составляющие очень слабы и кажется , будто они разбросаны по всему небу. Также не стоит путать эту галактику и NGC 253, которая расположилась в том же созвездии Скульптор, но выглядит намного ярче и является спиральной с перемычкой.

Карликовая галактика в созвездии Скульптор. Источник: ESO

Информация о снимке

Информация о снимке

Несмотря на всю трудность своего обнаружения, эта карликовая галактика была среди первых слабых карликовых объектов, обнаруженных в области вокруг Млечного Пути. Её странная форма заставляет задумываться астрономов с момента открытия и до сегодняшнего дня. Но в наше время астрономы уже привыкли к сфероидальным галактикам и поняли, что такие объекты позволяют заглянуть далеко в прошлое Вселенной.

Считается, что Млечный Путь, впрочем, как и все большие галактики, сформировался в результате слияния с меньшими объектами в течение первых лет существования Вселенной. И если некоторые из этих малых галактик всё ещё существуют в наши дни, то они должны содержать в себе много чрезвычайно старых звёзд. Именно поэтому Карликовая галактика в созвездии Скульптор отвечает всем требованиям, которые предъявляются к первородным галактикам. Как раз эти древние звёзды и можно наблюдать на данном изображении.

Астрономы научились определять возраст зв ёзд в галактике по характерным подписям, которые присутствуют в их световом потоке. Это излучение несёт в себе очень мало признаков наличия в этих объектах тяжёлых химических элементов. Дело в том, что такие химические соединения имеют тенденцию накапливаться в галактиках при смене поколений звёзд. Таким образом, малые концентрации тяжёлых молекул указывают на то, что средний возраст зв ёзд в этой сфероидальной галактике достаточно высокий.

Область неба вокруг карликовой галактики в созвездии Скульптор.

Относительно яркие и массивные светила довольно просто увидеть невооруженным глазом, но в Галактике куда больше карликовых звезд, которые видны только в мощные телескопы, даже если расположены вблизи от Солнечной системы. Среди них есть как скромные долгожители — красные карлики, так и недотянувшие до полноценного звездного статуса коричневые и отошедшие на покой белые карлики, постепенно превращающиеся в черные.

Судьба звезды целиком зависит от размера, а точнее от массы. Чтобы лучше представить себе массу звезды, можно привести такой пример. Если положить на одну чашу весов 333 тысячи земных шаров, а на другую — Солнце, то они уравновесят друг друга. В мире звезд наше Солнце — середнячок. Оно в 100 раз уступает по массе самым крупным звездам и раз в 20 превосходит самые легкие. Казалось бы, диапазон невелик: приблизительно как от кита (15 тонн) до кота (4 килограмма). Но звезды — не млекопитающие, их физические свойства гораздо сильнее зависят от массы. Сравнить хотя бы температуру: у кита и кота она почти одинаковая, а у звезд различается в десятки раз: от 2000 Кельвинов у карликов до 50 000 у массивных звезд. Еще сильнее — в миллиарды раз различается мощность их излучения. Именно поэтому на небе мы легко замечаем далекие гигантские звезды, а карликов не видим даже в окрестностях Солнца.

Но когда были проведены аккуратные подсчеты, выяснилось, что распространенность гигантов и карликов в Галактике сильно напоминает ситуацию с китами и котами на Земле. В биосфере есть правило: чем мельче организм, тем больше его особей в природе. Оказывается, это справедливо и для звезд, но объяснить эту аналогию не так-то просто. В живой природе действуют пищевые цепи: крупные поедают мелких. Если бы лис в лесу стало больше, чем зайцев, то чем бы питались эти лисы? Однако звезды, как правило, не едят друг друга. Тогда почему же гигантских звезд меньше, чем карликов? Половину ответа на этот вопрос астрономы уже знают. Дело в том, что жизнь массивной звезды в тысячи рад короче, чем карликовой. Чтобы удержать собственное тело от гравитационного коллапса, звездам-тяжеловесам приходится раскаляться до высокой температуры — сотен миллионов градусов в центре. Термоядерные реакции идут в них очень интенсивно, что приводит к колоссальной мощности излучения и быстрому сгоранию «топлива». Массивная звезда растрачивает всю энергию за несколько миллионов лет, а экономные карлики, медленно тлея, растягивают свой термоядерный век на десятки и более миллиардов лет. Так что, когда бы ни родился карлик, он здравствует до сих пор, ведь возраст Галактики всего около 13 миллиардов лет, А вот массивные звезды, появившиеся на свет более 10 миллионов лет назад, давно уже погибли.

Однако это лишь половина ответа на вопрос, почему гиганты встречаются в космосе так редко. А вторая половина состоит в том, что массивные звезды рождаются намного реже, чем карликовые. На сотню новорожденных звезд типа нашего Солнца появляется лишь одна звезда с массой раз в 10 больше, чем у Солнца. Причину этой «экологической закономерности» астрофизики пока не разгадали.

До недавних пор и классификации астрономических объектов зияла большая дыра: самые маленькие известные звезды были раз в 10 легче Солнца, а самая массивная планета — Юпитер — в 1000 раз. Существуют ли в природе промежуточные объекты — не звезды и не планеты с массой от 1/1000 до 1/10 солнечной? Как должно выглядеть это «недостающее звено»? Можно ли его обнаружить? Эти вопросы давно волновали астрономов, но ответ стал намечаться лишь в середине 1990-х годон, когда программы поиска планет за пределами Солнечной системы принесли первые плоды. На орбитах вокруг нескольких солнцеподобных звезд обнаружились планеты-гиганты, причем все они оказались массивнее Юпитера. Промежуток по массе между звездами и планетами стал сокращаться. Но возможна ли смычка, и где пронести границу между звездой и планетой?

Еще недавно казалось, что это совсем просто: звезда светит собственным светом, а планета — отраженным. Поэтому в категорию планет попадают те объекты, в недрах которых за все время существованиям не протекают реакции термоядерного синтеза. Если же на некотором этапе эволюции их мощность была сравнима со светимостью (то есть термоядерные реакции служили главным источником энергии), то такой объект достоин называться звездой. Но оказалось, что могут существовать промежуточные объекты, в которых термоядерные реакции происходят, но никогда не служат основным источником энергии. Их обнаружили в 1996 году, но еще задолго до того они получили название коричневых карликов. Открытию этих странных объектов предшествовал тридцатилетний поиск, начавшийся с замечательного теоретического предсказания.

В 1963 году молодой американский астрофизик индийского происхождения Шив Кумар рассчитал модели самых мало массивных звезд и выяснил, что если масса космического тела превосходит 7,5% солнечной, то температура в его ядре достигает нескольких миллионов градусов и R нем начинаются термоядерные реакции превращения водорода в гелий. При меньшей массе сжатие останавливается раньше, чем температура в центре достигает значения, необходимого для протекания реакции синтеза гелия. С тех пор это критическое значение массы называют «границей возгорания водорода», или пределом Кумара. Чем ближе звезда к этому, пределу, тем медленнее идут в ней ядерные реакции. Например, при массе 8% солнечной звезда будет «тлеть» около 6 триллионов лет — в 400 раз больше современного возраста Вселенной! Так что, в какую бы эпоху ни родились такие звезды, все они еще находятся в младенческом возрасте.

Впрочем и в жизни менее массивных объектов бывает краткий эпизод, когда они напоминают нормальную звезду. Речь идет о телах с массами от 1% до 7% массы Солнца, то есть от 13 до 75 масс Юпитера. В период формирования, сжимаясь под действием гравитации, они разогреваются и начинают светиться инфракрасным и даже чуть-чуть красным — видимым светом. Температура их поверхности может подняться до 2500 Кельвинов, а в недрах превысить 1 миллион кельвинов. Этого хватает, чтобы началась реакция термоядерного синтеза гелия, но только не из обычного водорода, а из очень редкого тяжелого изотопа — дейтерия, и не обычного гелия, а легкого изотопа гелия-3. Поскольку дейтерия в космическом веществе очень мало, весь он быстро сгорает, не давая существенного выхода энергии. Это все равно, что бросить в остывающий костер лист бумаги: сгорит моментально, но тепла не даст. Разогреться сильнее «мертворожденная» звезда не может — ее сжатие останавливается под действием внутреннего давления вырожденного газа. Лишенная источников тепла, она в дальнейшем лишь остывает, как обычная планета. Поэтому заметить эти неудавшиеся звезды можно только в период их недолгой молодости, пока они теплые. Выйти на стационарный режим термоядерного горения им не суждено.

Открытие «мертворожденных» звезд

Физики уверены: что не запрещено законами сохранения, то разрешено. Астрономы добавляют к этому; природа богаче нашего воображения. Если Шив Кумар смог придумать коричневые карлики, то природе, казалось бы, не составит труда их создать. Три десятилетия продолжались безрезультатные поиски этих тусклых светил. В работу включались все новые и новые исследователи. Даже теоретик Кумар прильнул к телескопу в надежде найти объекты, открытые им на бумаге. Его идея была проста: обнаружить одиночный коричневый карлик очень сложно, поскольку нужно не только зафиксировать его излучение, но и доказать, что это не далекая гигантская звезда с холодной (по звездным меркам) атмосферой или даже окруженная пылью галактика на краю Вселенной. Самое трудное в астрономии – определить расстояние до объекта. Поэтому нужно искать карлики рядом с нормальными звездами, расстояния до которых уже известны. Но яркая звезда ослепит телескоп и не позволит раз-глядеть тусклый карлик. Следовательно, искать их надо рядом с другими карликами! Например с красными — звездами предельно малой массы или же белыми — остывающими остатками нормальных звезд. В 1980-х годах поиски Кумара и других астрономов не принесли результата. Хотя не раз появлялись сообщения об открытии коричневых карликов, но детальное исследование каждый раз показывало, что это — маленькие звезды. Однако идея поиска была правильная и спустя десятилетие она сработала.

В 1990-е годы у астрономов появились новые чувствительные приемники излучения — ПЗС-матрицы и крупные телескопы диаметром до 10 метров с адаптивной оптикой, которая компенсирует вносимые атмосферой искажения и позволяет с поверхности Земли получать почти такие же четкие изображения, как из космоса. Это сразу же принесло плоды: были обнаружены предельно тусклые красные карлики, буквально пограничные с коричневыми.

А первого коричневого карлика отыскала в 1995 году группам астрономов под руководством Рафаэля Реболо из Института астрофизики на Канарских островах. С помощью телескопа на острове Ла-Пальма они нашли в звездном скоплении Плеяды объект, который назвали Teide Pleiades 1, позаимствовав название у вулкана Пико-де-Тейде на острове Тенерифе. Правда, некоторые сомнения в природе этого объекта оставались, и пока испанские астрономы доказывали, что это действительно коричневый карлик, в том же году о своем открытии заявили их американские коллеги. Группа под руководством Тадаши Накаджима из Калифорнийского технологического института с помощью телескопов Паломарской обсерватории обнаружила на расстоянии 19 световых лет от Земли в созвездии Зайца, рядом с очень маленькой и холодной звездой Глизе 229, еще более мелкий и холодный ее спутник Глизе 229В. Температура его поверхности — всего 1000 К, а мощность излучения в 160 тысяч раз ниже солнечной.

Незвездная природа Глизе 229В окончательно подтвердилась в 1997 году так называемым литиевым тестом. В нормальных звездах небольшое количество лития, сохранившегося с эпохи рождения Вселенной, быстро сгорает в термоядерных реакциях. Однако коричневые карлики для этого недостаточно горячи. Когда в атмосфере Глизе 229В был обнаружен литий, этот объект стал первым «несомненным» коричневым карликом. По размерам он почти совпадает с Юпитером, а его масса оценивается в 3- 6% массы Солнца. Он обращается вокруг своего более массивного компаньона Глизе 229А по орбите радиусом около 40 астрономических единиц (как Плутон вокруг Солнца).

Очень быстро выяснилось, что для поиска «несостоявшихся звезд» годятся и не самые крупные телескопы. Первых одиночных коричневых карликов открыли на рядовом телескопе в ходе планомерных обзоров неба. Например, объект Kelu-1 в созвездии Гидры обнаружен в рамках долгосрочной программы поиска карликовых звезд в окрестностях Солнца, которая началась на Европейской Южной обсерватории в Чили еще в 1987 году. При помощи 1-метрового телескопа системы Шмидта астроном Чилийского университета Мария Тереза Руиз уже много лет регулярно фотографирует некоторые участки неба, а затем сравнивает снимки, полученные с интервалом в годы. Среди сотен тысяч слабых звезд она ищет те, которые заметно смещаются относительно других — это безошибочный признак близких светил. Таким способом Мария Руиз открыла уже десятки белых карликов, а в 1997 году ей наконец попался коричневый. Его тип определили по спектру, в котором оказались линии лития и метана. Мария Руиз назвала его Kelu-1: на языке народа мапуче, населявшего некогда центральную часть Чили, «келу» означает красный. Он расположен на расстоянии около 30 световых лет от Солнца и не связан ни с одной звездой.

Все эти находки, сделанные в 1995-1997 годах, и стали прототипами нового класса астрономических объектов, который занял место между звездами и планетами. Как это обычно бывает в астрономии, за первыми открытиями сразу последовали новые. В последние годы множество карликов обнаружено в ходе рутинных инфракрасных обзоров неба 2MASS и DENIS.

Звездная пыль

Уже вскоре после открытия бурые карлики заставили астрономов внести коррективы в устоявшуюся десятки лет назад спектральную классификацию звезд. Оптический спектр звезды — это ее лицо, а точнее — паспорт. Положение и интенсивность линий в спектре прежде всего говорят о температуре поверхности, а также о других параметрах, в частности химическом составе, плотности газа в атмосфере, напряженности магнитного поля и т. п. Около 100 лет назад астрономы разработали классификацию звездных спектров, обозначив каждый класс буквой латинского алфавита. Их порядок многократно пересматривали, переставляя, убирая и добавляя буквы, пока не сложилась общепринятая схема, безупречно служившая астрономам многие десятки лет. В традиционном виде последовательность спектральных классов выглядит так: O-B-A-F-G-K-M. Температура поверхности звезд от класса О до класса М убывает со 100 000 до 2000 К. Английские студенты-астрономы даже придумали мнемоническое правило для запоминания порядка следования букв «Oh! Be A Fine Girl, Kiss Me!» И вот на рубеже веков этот классический ряд пришлось удлинить сразу на две буквы. Оказалось, что в формировании спектров экстремально холодных звезд и субзвезд весьма важную роль играет пыль.

На поверхности большинства звезд из-за высокой температуры никакие молекулы существовать не могут. Однако у самых холодных звезд класса М (с температурой ниже 3000 К) в спектрах видны мощные полосы поглощения окисей титана и ванадия (TiO, VO). Естественно, ожидалось, что у еще более холодных коричневых карликов эти молекулярные линии будут еще сильнее. Все в том же 1997 году у белого карлика GD 165 был открыт коричневый компаньон GD 165В, с температурой поверхности 1900 К и светимостью 0,01% солнечной. Он поразил исследователей тем, что в отличие от других холодных звезд не имеет полос поглощения TiO и VO, за что был прозван «странной звездой». Такими же оказались спектры и других коричневых карликов с температурой ниже 2000 К. Как показали расчеты, молекулы TiO и VO в их атмосферах конденсируются в твердые частицы — пылинки, и уже не проявляют себя в спектре, как это свойственно молекулам газа.

Чтобы учесть эту особенность, Дэви Киркпатрик из Калифорнийского технологического института уже на следу-ющий год предложил расширить традиционную спектральную классификацию, добавив в нее класс L для мало-массивных инфракрасных звезд, с температурой поверхности 1500-2000 К. Большинство объектов L-класса должны быть коричневыми карликами, хотя очень старые маломассивные звезды тоже могут остыть ниже 2000 К.

Продолжая исследования L-карликов, астрономы обнаружили еще более экзотические объекты. В их спектрах видны мощные полосы поглощения воды, метана и молекулярного водорода, поэтому их называют «метановыми карликами». Прототипом этого класса считается первый открытый бурый карлик Глизе 229В. В 2000 году Джеймс Либерт с коллегами из Аризонского университета выделили в самостоятельную группу Т-карлики с температурой 1500-1000 К и даже чуть ниже.

Коричневые карлики ставят перед астрономами много сложных и очень интересных вопросов. Чем холоднее атмосфера звезды, тем труднее изучать ее как наблюдателям, так и теоретикам. Присутствие пыли делает эту задачу еще сложнее: конденсация твердых частиц не только изменяет состав свободных химических элементов в атмосфере, но и влияет на теплообмен и форму спектра. В частности, теоретические модели с учетом пыли предсказали парниковый эффект в верхних слоях атмосферы, что подтверждается наблюдениями. Вдобавок расчеты показывают, что после конденсации пылинки начинают тонуть. Возможно, на разных уровнях в атмосфере формируются плотные облака пыли. Метеорология коричневых карликов может оказаться не менее разнообразной, чем у планет-гигантов. Но если атмосферы Юпитера и Сатурна можно изучать вблизи, то расшифровывать метано-вые циклоны и пылевые бури коричневых карликов придется только по их спектрам.

Секреты «ПОЛУКРОВОК»

Вопросы о происхождении и численности коричневых карликов пока остаются открытыми. Первые подсчеты их количества в молодых звездных скоплениях типа Плеяд показывают, что по сравнению с нормальными звездами общая масса коричневых карликов, видимо, не так велика, чтобы «списать» на них всю скрытую массу Галактики. Но этот вывод еще нуждается в проверке. Общепринятая теория происхождения звезд не дает ответа и на вопрос, как образуются коричневые карлики. Объекты столь малой массы могли бы формироваться подобно планетам-гигантам в околознездных дисках. Но обнаружено довольно много одиночных коричневых карликов, и трудно предположить, что все они вскоре после рождения были потеряны своими более массивными компаньонами. К тому же совсем недавно на орбите вокруг одного из коричневых карликов открыли планету, а значит, он не подвергался сильному гравитационному влиянию соседей, иначе карлик бы ее потерял.

Совершенно особый путь рождения коричневых карликов наметился недавно при исследовании двух тесных двойных систем — LL Андромеды и EF Эридана. В них более массивный компаньон, белый карлик, своей гравитацией стягивает вещество с менее массивного спутника, так называемой звезды-до нора. Расчеты показывают, что первоначально в этих системах спутники-доноры были обычными звездами, но за несколько миллиардов лет их масса упала ниже предельного значения и термоядерные реакции в них угасли. Теперь по внешним признакам это типичные коричневые карлики.

Температура звезды-донора в системе LL Андромеды около 1300 К, а в системе EF Эридана — около 1650 К. По массе они лишь в несколько десятков раз превосходят Юпитер, а в их спектрах видны линии метана. Насколько их внутренняя структура и химический состав сходны с аналогичными параметрами «настоящих» коричневых карликов, пока неизвестно. Таким образом, нормальная маломассивная звезда, потеряв значительную долю своего вещества, может стать коричневым карликом. Правы были астрономы, утверждая, что природа изобретательнее нашей фантазии. Коричневые карлики, эти «не звезды и не планеты», уже начали преподносить сюрпризы. Как выяснилось недавно, несмотря на свой холодный характер, некоторые из них являются источниками радио- и даже рентгеновского (!) излучения. Так что в будущем этот новый тип космических объектов обещает нам немало интересных открытий.

Вырожденные звезды

Обычно в период формирования звезды ее гравитационное сжатие продолжается до тех пор, пока плотность и температура в центре не достигнут значений, необходимых для запуска термоядерных реакций, и тогда за счет выделения ядерной энергии давление газа уравновешивает его собственное гравитационное притяжение. У массивных звезд температура выше и реакции начинаются при относительно не-большой плотности вещества, но чем меньше масса, тем выше оказывается «плотность зажигания». Например, в центре Солнца плазма сжата до 150 граммов на кубический сантиметр.

Однако при плотности, еще в сотни раз большей, вещество начинает сопротивляться давлению независимо от роста температуры, и в итоге сжатие звезды прекращается прежде, чем выход энергии в термоядерных реакциях становится значимым. Причиной остановки сжатия служит квантово-механический эффект, который физики называют давлением вырожденного электронного газа. Дело в том, что электроны относятся к тому типу частиц, который подчиняется так называемому «принципу Паули», установленному физиком Вольфгангом Паули в 1925 году. Этот принцип утверждает, что тождественные частицы, например электроны, не могут одновременно находиться в одном и том же состоянии. Именно поэтому в атоме элек-троны движутся по разным орбитам. В недрах звезды нет атомов: при большой плотно-сти они раздавлены и существует единое «электронное море». Для него принцип Паули звучит так: расположенные рядом электроны не могут иметь одинаковые скорости.

Если один электрон покоится, другой должен двигаться, а третий - двигаться еще быстрее, и т. д. Такое состояние электронного газа физики называют вырождением. Даже если небольшая звезда сожгла все термоядерное топливо и лишилась источника энергии, ее сжатие может быть остановлено давлением вырожденного электронного газа. Как бы сильно ни охладилось вещество, при высокой плотности движение электронов не прекратится, а значит, давление вещества будет противостоять сжатию независимо от температуры: чем больше плотность, тем выше давление.

Сжатие умирающей звезды с массой, равной солнечной, остановится, когда она уменьшится примерно до размера Земли, то есть в 100 раз, а плотность ее вещества станет в миллион раз выше плотности воды. Так образуются белые карлики. Звезда меньшей массы прекращает сжатие при меньшей плотности, поскольку сила ее тяготения не так велика. Очень маленькая звезда-неудачник может стать вырожденной и прекратить сжатие еще до того, как в ее недрах температура поднимется до порога «термо-ядерного зажигания». Такому телу никогда не стать настоящей звездой.

В который раз томит меня мечта,

Что где-то там, в другом углу вселенной,

Такой же сад, и та же темнота,

И те же звезды в красоте нетленной.

Н. Заболоцкий

Исследование природы астрономических (да и не только астрономических) объектов того или иного типа обычно проходит через несколько стадий. Сначала от­сутствует ясное понимание, имеется букет самых раз­личных взаимоисключающих предположений. Затем выкристаллизовывается некоторая общепринятая точка зрения, позволяющая по крайней мере качественно объ­яснить наблюдаемую картину в ее основных деталях. Исследуемые объекты перестают быть непонятными, от них протягиваются ниточки связи к ранее известным объектам или явлениям.

И вот через некоторое время наступает третья ста­дия. Новые наблюдения или теоретические расчеты по­казывают, что все не так просто, как казалось. Хотя ста­рые объяснения в своей основе могут остаться, объекты исследования опять озадачивают своим нежеланием ук­ладываться в простые и ясные схемы. Нужны новые идеи, новые расчеты. Наконец, на следующей, четвертой стадии вновь возникает непротиворечивая и уже более сложная, чем раньше, картина. Понимание поднялось на новый, более высокий уровень. В дальнейшем все мо­жет вновь повториться - при появлении неожиданных наблюдательных фактов и при ином теоретическом под­ходе.

Исследование карликовых эллиптических галактик (dE-галактик), о которых пойдет речь в этом разделе, проходит сейчас вторую стадию. Из всех карликовых галактик это наиболее понятные для нас объекты. Они не представляют какой-либо группы, резко выделяю­щейся по своим особенностям, а их свойства «продол­жают» свойства обычных эллиптических галактик, экстраполируясь в область низких светимостей и размеров.

Самые близкие к нам dE-галактики - четыре эллип­тических спутника Туманности Андромеды. Два из них, галактики М 32 и NGC 205, наблюдаются совсем рядом с гигантской спиральной галактикой, а два более сла­бых, NGC 185 и NGC 147, расположены на несколько угловых градусов к северу от нее. Два первых выглядят светлыми пятнами на любой фотографии Туманности Андромеды, проецируясь на ее внешние области; галак­тика М 32 - это компактное, почти круглое образова­ние, а галактика NGC 205 на фотографии имеет более размытое, заметно вытянутое изображение. Их абсолют­ная звездная величина близка к -16 m , поэтому эти га­лактики находятся на той условной границе, которая отделяет карлики от «нормальных» галактик.

Запечатлеть отдельные звезды на фотографиях этих карликовых галактик, т. е., как говорят астрономы, раз­решить галактики на звезды, ценой больших усилий удалось в 40-х годах В. Бааде, работавшему на самом крупном в то время телескопе в мире - 2,5-метровом рефлекторе Маунт Паломар. Надо сказать, что и в на­стоящее время даже с помощью лучших телескопов разрешить спутники Туманности Андромеды на звезды яв­ляется не простой задачей.

Долгое время звездный состав этих маленьких га­лактик, как, впрочем, и центральной области самой Ту­манности Андромеды, оставался загадочным: на фото­графиях не было заметно присутствия ярчайших звезд - голубых сверхгигантов, хотя эти звезды уверенно наб­людаются в спиральных ветвях рядом расположенной Туманности Андромеды.

Поставив перед собой задачу разрешить на звезды центральную часть Туманности Андромеды и ее эллип­тические спутники, В. Бааде начал со всей серьезностью готовиться к ее осуществлению. Эти объекты, как было известно, имеют красноватый цвет, и он предположил (и не ошибся), что это и есть цвет самых ярких звезд, которые в них содержатся. Поэтому В. Бааде отказал­ся от пластинок, реагирующих на синие лучи, обычно используемых в астрономической фотографии, и выбрал наиболее чувствительные из доступных в то время фото­пластинок, воспринимающих оранжевый и красный цве­та. Однако эти пластинки обладали значительно более низкой чувствительностью, чем «синие», и для ее повы­шения приходилось, прежде чем использовать пластин­ки, специально обрабатывать их аммиаком.

Но и после этого чувствительность оказывалась не слишком высокой, и чтобы была хоть какая-то надежда запечатлеть на них звезды, недоступные для «синих» пластинок, необходимо было рассчитывать на многочасо­вые экспозиции. Дело в том, что на высокочувствитель­ных «синих» пластинках многочасовые экспозиции де­лать нельзя: уже через 1,5 ч слабое свечение ночного не­ба затягивало их плотной вуалью. По расчетам В. Баа­де, такой подход должен был позволить получить на «красных» пластинках звезды на 0,5 т (в 1,6 раза) бо­лее слабые, чем на «синих».

Как еще можно поднять проницающую способность телескопа, т. е. его способность регистрировать слабые звезды?

Люди, знакомые со спецификой астрономических наблюдений, хорошо знают, что возможности телескопа как оптического инструмента сильно меняются от ночи к ночи, даже если те одинаково ясные, а иногда и в тече­ние одной ночи. Это связано с различным состоянием атмосферы, а для больших телескопов - еще и с состоянием зеркального объектива, отражающая поверхность которого подвержена температурным деформациям из-за различия температуры как между разными частями зер­кала, так и между зеркалом и воздушной средой. И лишь в последнее время научились делать большие зеркала из вещества, практически не подвергающегося теплово­му расширению.

Впоследствии В. Бааде писал по этому поводу: «Нельзя было надеяться достичь успеха, если просто вставить «красную» пластинку в кассету 2,5-метрового телескопа, сделать экспозицию, проявить и пытаться что-то разглядеть. Было совершенно ясно, что звезды будут очень слабы и по всей вероятности чрезвычайно тесно расположены. Это на пределе разрешающей спо­собности 2,5-метрового телескопа, и, очевидно, следова­ло бы быть очень осторожным и не пренебрегать ни малейшим шансом.

Чтобы сохранить разрешающую способность как можно более высокой, надо было, во-первых, проводить наблюдения лишь при получении самых хороших изоб­ражений, Когда турбулентный диск звезд очень мал. Во-вторых, стоило наблюдать лишь в те ночи, когда форма зеркала была близка к идеальной, без «завала» краев, который всегда ведет к увеличению диска звезды. В-третьих (и это было главной проблемой), следовало что-то предпринять при изменениях фокуса, возникав­ших вследствие того, что зеркало 2,5-метрового телеско­па изготовлено из стекла старой марки. Даже когда но­чи в этом смысле были удовлетворительными, происхо­дили изменения фокусного расстояния от 1,5 до 2 мм, а случались и такие ночи, когда эти изменения достигали 5-6 мм».

В. Бааде в результате пришлось изобрести свой спо­соб, как непрерывно проверять правильность фокуси­ровки изображения, который позволял не прерывать многочасовую экспозицию.

Больше года длилась подготовка к решающим на­блюдениям. Наконец, осенью 1943 г. в течение несколь­ких ночей с исключительно хорошим качеством изобра­жения были получены долгожданные негативы, на кото­рых спутники Туманности Андромеды (как и ее цент­ральная часть, состоящая из похожих звезд) оказались усыпанными мельчайшими точками звезд. Так с рассто­яния почти в 700 тыс, пк выглядели ярчайшие звезды карликовых эллиптических галактик. Следует сказать, что успеху их обнаружения способствовало одно нема­ловажное обстоятельство. Над обсерваторией стояли действительно темные ночи, поскольку еще не было от­менено связанное с войной затемнение гигантского го­рода Лос-Анджелеса с его оживленными пригородами, расположенными поблизости.

К этому моменту астрономам были хорошо знакомы самые разнообразные типы звезд, но звезды, сфотогра­фированные В. Бааде, озадачили ученого. Для обычных красных звезд они имели слишком высокую светимость. Казалось странным, что в обозреваемой звездной окре­стности Солнца таких звезд почти нет, а в карликовых эллиптических галактиках они дают основной вклад в излучение галактики.

Лишь через некоторое время В. Бааде осенила до­гадка: точно из таких же звезд состоят шаровые скоп­ления нашей Галактики. Эти скопления представляют собой довольно далекие объединения сотен тысяч звезд (ближайшее из них удалено от нас на расстояние не­сколько тысяч световых лет). Их возраст превышает 10 млрд. лет, т. е. они являются настоящими реликтами звездного мира.

Дальнейшие исследования подтвердили догадку В. Бааде. Ярчайшие звезды карликовых эллиптических галактик, как и шаровых скоплений, оказались красны­ми гигантами высокой светимости - сильно раздувши­мися и изменившими свою внутреннюю структуру звез­дами, поскольку за долгую их жизнь основное ядерное топливо (водород) в значительной степени уж исчер­палось в звездных недрах. Характерной особенностью звезд карликовых галактик является и низкое содер­жание тяжелых химических элементов в звездной атмос­фере (хотя и не такое низкое, как в шаровых скопле­ниях). Забегая вперед, отметим, что этот так называе­мый дефицит тяжелых элементов характерен для кар­ликовых галактик всех типов.

«Нормальные» эллиптические галактики, не относя­щиеся по своей светимости к карликовым, также состо­ят из старых звезд, правда, не столь сильно обедненных тяжелыми элементами, как в карликовых галактиках. По-видимому, звездообразование в «нормальных» Е-галактиках практически закончилось еще многие милли­арды лет назад. История dE-галактик, как оказалось, может быть иной. Это хорошо видно на примере все тех же спутников Туманности Андромеды.

Так, например, характер спектра спутника Туманно­сти Андромеды М 32 можно объяснить, предположив, что, хотя сейчас звездообразование в галактике, по-ви­димому, не происходит, оно существовало там несколько миллиардов лет назад.

В двух других спутниках Туманности Андромеды NGC 205 и NGC 185, непосредственно наблюдается не­сколько десятков голубых звезд высокой светимости, спрятавшихся среди россыпи старых красных звезд. По астрономическим масштабам времени такие звезды только что образовались, так как большой расход энер­гии делает их короткоживущими. Их возраст вряд ли превышает 100 млн. лет, что для звезд очень мало. Солн­це, например, существует в 50 раз дольше. Следова­тельно, в этих галактиках еще продолжается звездооб­разование.

Конечно, вместе с горячими звездами высокой свети­мости там могут (в значительно большем количестве) образовываться и маломассивные звезды, но их невоз­можно отыскать среди более ярких, но старых звезд га­лактики. Поэтому очаги звездообразования определя­ют лишь по положению голубых звезд, которые обычно локализованы в небольших участках галактики. Напри­мер, в галактике NGC 185 все голубые звезды занимают область размером менее 300 пк (размер всей галактики в десятки раз больше).

Проблема существования небольшого количества мо­лодых звезд в некоторых dE-галактиках представляет значительный интерес. Ведь в массивных эллиптических галактиках отсутствие звездообразования обычно связы­вают с отсутствием межзвездного газа, т. е. той среды, которая может породить звезды при своем сильном сжа­тии и охлаждении. Во всех случаях присутствие молодых голубых звезд заметно только в тех галактиках, где наб­людается межзвездная среда. Однако пока лишь в двух dE-галактиках удалось обнаружить холодный межзвезд­ный газ прямыми наблюдениями - в спутниках Туман­ности Андромеды NGC 205, NGC 185 (да и здесь его крайне мало - примерно 0,01 % полной массы галак­тики).

Тем не менее наблюдения близких dE-галактик по­казали что и в них молодые звезды связаны с межзвездной средой. В галактиках NGC 205 и NGC 185, в кото­рых как раз «поштучно» наблюдаются молодые голубые звезды, заметны темные пылевые туманности, связан­ные, как мы знаем на примере нашей Галактики, с об­ластями сравнительно плотного и холодного газа. Ра­зумеется, его там мало, но и звездообразование, можно сказать, еле теплится.

Откуда же берется этот газ?

Оказывается, если даже полностью «очистить» га­лактику от газа, со временем он в небольшом количе­стве появится вновь. Его поставляют в межзвездное про­странство стареющие звезды. Прямым доказательством такого процесса для ближайших галактик служат наб­людения планетарных туманностей - расширяющихся газовых оболочек, сбрасываемых звездами на определен­ном этапе их жизненного пути. Такие туманности обна­ружены во всех близких dE-галактиках. Со временем сброшенный звездами газ заполняет все межзвездное пространство. А затем в зависимости от конкретных фи­зических условий в галактике он либо покидает галак­тику, уходя в межгалактическое пространство, либо по­степенно остывает и сжимается, чтобы вновь превратить­ся в звезды,

Судьба газа, сброшенного звездами, зависит от массы эллиптической галактики, Теоретические расчеты пока­зали, межзвездный газ быстрее остывает и сжимается в небольших эллиптических галактиках. Качественно это объясянется тем, что звезды в них медленнее движутся, и столкновения газовых масс, сбрасываемых отдельными звездами, не приводят к такому сильному разогреву га­за, какой можно ожидать в больших галактиках. Воз­можно, именно поэтому в эллиптических «нормальных», не карликовых, галактиках следы газа и молодых звезд встречаются крайне редко. Но кто знает, если бы какая-нибудь гигантская эллиптическая галактика находилась от нас не дальше, чем Туманность Андромеды, мы, быть может, и в ней смогли отыскать отдельные голубые звезды?

Хотя в карликовых эллиптических галактиках и про­исходит в некоторых случаях слабое звездообразование, в целом это очень спокойные и очень медленно меняю­щиеся звездные системы. В них не наблюдается никаких активных процессов, связанных с незвездными источни­ками энергии, - выбросов вещества, нетеплового радиоизлучения, активности ядра. Да и самого ядра в обыч­ном понимании этого слова в dE-галактиках в большин­стве случаев нет, хотя в самом центре NGC 205 и М 32 виден маленький звездообразный объект («керн»), по­хожий на массивное шаровое скопление звезд. В более далеких галактиках подобные образования уже не до­ступны для наблюдений.

Разумеется, dE-галактики не ограничиваются спутни­ками Туманности Андромеды. Среди карликов - это га­лактики сравнительно высоких светимостей, поэтому-то они доступны наблюдениям до расстояний несколько десятков миллионов световых лет. Много dE-галактик найдено, например, в ближайшем большом скоплении галактик в созвездии Девы. Но среди большого числа dE-галактик всего лишь в одном случае можно запо­дозрить объект с активным ядром - своего рода карли­ковую радиогалактику. Об этом объекте стоит расска­зать подробнее, чтобы показать, с какими трудностями подчас встречаются исследователи в попытке выяснить природу наблюдаемого источника.

Радиогалактики, мощнейшие источники радиоволн в природе, являются, как правило, гигантскими эллипти­ческими галактиками, активное ядро которых выбрасы­вает потоки релятивистских (т. е. имеющих скорость, очень близкую к скорости света) протонов и электронов. Такие галактики находят, изучая фотографии тех уча­стков неба, где наблюдается тот или иной радиоисточ­ник.

Когда в 60-х годах было установлено, что координа­ты радиоисточника, имеющего обозначение ЗС 276, сов­падают с координатами эллиптической галактики не­большого углового размера, это не могло вызвать боль­шого удивления. Она вполне могла быть обычной радио­галактикой, удаленной на громадное расстояние, с ко­торого выглядела как объект 15-й звездной величины. Спектр галактики не был известен, но сама она упоми­налась в двух наиболее полных каталогах галактик - каталогах Воронцова-Вельяминова и Цвикки. У нее ока­залась слегка голубоватая внутренняя область доволь­но высокой поверхностной яркости и более «красная» оболочка размером около 1′.

«Нормальная» радиогалактика могла так выглядеть с расстояния примерно 100 Мпк. Поскольку в мире га­лактик хорошо выполняется закон, по которому чем дальше галактика, тем большую лучевую скорость она имеет (закон Хаббла), можно было ожидать, что ее ско­рость должна быть примерно равной 6-8 тыс. км/с. Ка­ково же было удивление, когда ее спектр, сфотографи­рованный вскоре после отождествления с радиоисточни­ком ЗС 276, засвидетельствовал, что ее скорость равна всего 30 км/с (к тому же спектр не содержал ожидаемых эмиссионных линий, характерных для радиогалактик).

В 1970 г. канадский астроном С. ван ден Берг, ра­ботая в США на гигантском 5-метровом телескопе, по­лучил с помощью электронно-оптического преобразова­теля новую спектрограмму галактики, чтобы проверить правильность неожиданной оценки. По восьми линиям поглощения было найдено более точное значение скоро­сти ее движения (относительно Солнца): 10±8 км/с. Такая скорость скорее характерна не для галактик, а для ближайших к Солнцу звезд.

На этом основании советский астроном Ю. П. Псков­ский предположил, что здесь мы имеем место не с ра­диогалактикой, а со слабым радиоисточником внутри нашей Галактики. Не может ли этот объект быть обыч­ным остатком Сверхновой типа Крабовидной туманно­сти? В пользу этого, казалось, говорило и то, что поло­жение радиоисточника ЗС 276 всего на 1° отличается от положения Сверхновой, наблюдавшейся китайскими аст­рономами в XIII в.

Однако новые исследования объекта сделали такое объяснение маловероятным. Высококачественные его фо­тографии, полученные с помощью крупных телескопов, показали, что он не содержит такой волокнистой струк­туры, которая типична для остатков Сверхновых, а наб­людаемая сильная концентрация в нем яркости к центру очень характерна для эллиптических галактик. Наконец, С. ван ден Берг нашел, что спектр излучения объекта полностью аналогичен спектру шаровых скоплений, обедненных тяжелыми элементами, что, как мы знаем, можно ожидать, если перед нами dE-галактика.

Хотя скорость движения этой dE-галактики относи­тельно Солнца близка к нулю, скорость относительно центра нашей Галактики, учитывая орбитальное движе­ние Солнца, примерно равна 200 км/с. По закону Хаббла это соответствует расстоянию, всего в несколько раз большему, чем до Туманности Андромеды. Правда, для галактик с такими незначительными скоростями расстояние определяется из закона Хаббла ненадежно. Его можно было бы уточнить, если бы в галактике наблюда­лись отдельные звезды, но, увы, тех обнаружить не уда­лось, несмотря на специально предпринятые поиски.

Низкая скорость движения объекта ЗС 276 опреде­ленно показывает, что он не может быть очень далеким. Выходит, что это близкая карликовая звездная система. Однако если даже расстояние до нее составляет 2- 3 Мпк, то перед нами не просто карликовая эллиптиче­ская галактика, а объект уникальный по своей низкой светимости, которая составляет всего 3-10 7 Lc . Среди известных dE-галактик нет ни одной, светимость которой была хотя бы близкой к этому значению. Рекордным оказался и радиус - лишь 150-200 пк. И отсюда сов­сем непонятно, как столь крохотная галактика может обладать активным ядром и не уступать по мощности радиоизлучения такой гигантской галактике, как Туман­ность Андромеды.

Что же за взрыв привел к выбросу радиоизлучающих облаков, которые, судя по распределению радиоизлуче­ния, занимают сейчас объем, во много раз превышаю­щий объем самого загадочного объекта?

Познакомившись с карликовыми эллиптическими га­лактиками, перейдем теперь к галактикам, очень похо­жим на них по звездному составу, но значительно менее понятным по своей природе.

 

Возможно, будет полезно почитать: