Энергия в клетке. Использование и хранение

АТФ - универсальная энергетическая «валюта» клетки. Одно из наиболее удивительных «изобретений» природы - это молекулы так называемых «макроэргических» веществ, в химической структуре которых имеется одна или несколько связей, которые выполняют функцию накопителей энергии. В живой природе найдено несколько подобных молекул, но в организме человека встречается только одна из них - аденозинтрифосфорная кислота (АТФ). Это довольно сложная органическая молекула, к которой присоединены 3 отрицательно заряженных остатка неорганической фосфорной кислоты PO . Именно эти фосфорные остатки связаны с органической частью молекулы «макроэргическими» связями, легко разрушающимися при разнообразных внутриклеточных реакциях. Однако энергия этих связей не рассеивается в пространстве в виде тепла, а используется на движение или химическое взаимодействие других молекул. Именно благодаря этому свойству АТФ выполняет в клетке функцию универсального накопителя (аккумулятора) энергии, а также универсальной «валюты». Ведь почти каждое химическое превращение, происходящее в клетке, либо поглощает, либо высвобождает энергию. Согласно закону сохранения энергии, общее количество энергии, образованное в результате окислительных реакций и запасенное в виде АТФ, равно количеству энергии, которое может использовать клетка на свои синтетические процессы и выполнение любых функций. В качестве «оплаты» за возможность произвести то или иное действие клетка вынуждена расходовать свой запас АТФ. При этом следует особо подчеркнуть: молекула АТФ столь крупна, что она не способна проходить через клеточную мембрану. Поэтому АТФ, образованная в одной клетке, не может быть использована Другой клеткой. Каждая клетка тела вынуждена синтезировать АТФ Для своих нужд самостоятельно в тех количествах, в которых она необходима для выполнения ее функций.

Три источника ресинтеза АТФ в клетках организма человека. По-видимому, далекие предки клеток человеческого организма существовали много миллионов лет назад в окружении растительных клеток, которые в избытке снабжали их углеводами, причем кислорода было недостаточно или не было еще вовсе. Именно углеводы - наиболее употребимая для производства энергии в организме составная часть питательных веществ. И хотя большинство клеток человеческого тела приобрело способность использовать в качестве энергетического сырья также белки и жиры, некоторые (например, нервные, красные кровяные, мужские половые) клетки способны производить энергию только за счет окисления углеводов.

Процессы первичного окисления углеводов - вернее, глюкозы, которая и составляет, собственно, основной субстрат окисления в клетках, - происходят непосредственно в цитоплазме: именно там расположены ферментные комплексы, благодаря которым молекула глюкозы частично разрушается, а освободившаяся энергия запасается в виде АТФ. Этот процесс называется гликолиз, он может проходить во всех без исключения клетках организма человека. В результате этой реакции из одной 6-углеродной молекулы глюкозы образуется две 3-углеродные молекулы пировиноградной кислоты и две молекулы АТФ.


Гликолиз - весьма быстрый, но сравнительно малоэффективный процесс. Образовавшаяся в клетке после завершения реакций гликолиза пировиноградная кислота почти тут же превращается в молочную кислоту и порой (например, во время тяжелой мышечной работы) в весьма больших количествах выходит в кровь, так как это небольшая молекула, способная свободно проходить через клеточную мембрану. Такой массированный выход кислых продуктов обмена в кровь нарушает гомеостаз, и организму приходится включать специальные гомеостатические механизмы, чтобы справиться с последствиями мышечной работы или другого активного действия.

Образовавшаяся в результате гликолиза пировиноградная кислота содержит в себе еще много потенциальной химической энергии и может служить субстратом для дальнейшего окисления, но для этого нужны специальные ферменты и кислород. Этот процесс происходит во многих клетках, в которых содержатся специальные органеллы - митохондрии. Внутренняя поверхность мембран митохондрий сложена из крупных липидных и белковых молекул, среди которых большое количество окислительных ферментов. Внутрь митохондрии проникают образовавшиеся в цитоплазме 3-углеродные молекулы - обычно это бывает уксусная кислота (ацетат). Там они включаются в непрерывно идущий цикл реакций, в процессе которых от этих органических молекул поочередно отщепляются атомы углерода и водорода, которые, соединяясь с кислородом, превращаются в углекислый газ и воду. В этих реакциях выделяется большое количество энергии, которая запасается в виде АТФ. Каждая молекула пировиноградной кислоты, пройдя полный цикл окисления в митохондрии, позволяет клетке получить 17 молекул АТФ. Таким образом, полное окисление 1 молекулы глюкозы обеспечивает клетку 2+17x2 = 36 молекулами АТФ. Не менее важно, что в процесс митохондриального окисления могут включаться также жирные кислоты и аминокислоты, т. е. составляющие жиров и белков. Благодаря этой способности митохондрии делают клетку сравнительно независимой от того, какими продуктами питается организм: в любом случае необходимое количество энергии будет добыто.

Некоторая часть энергии запасается в клетке в виде более мелкой и подвижной, чем АТФ, молекулы креатинфосфата (КрФ). Именно эта маленькая молекула может быстро переместиться из одного конца клетки в другой - туда, где в данный момент более всего нужна энергия. КрФ не может сам отдавать энергию на процессы синтеза, мышечного сокращения или проведение нервного импульса: для этого требуется АТФ. Но зато КрФ легко и практически без потерь способен отдать всю заключенную в нем энергию молекуле аденазиндифосфата (АДФ), которая сразу же превращается в АТФ и готова к дальнейшим биохимическим превращениям.

Таким образом, затраченная в ходе функционирования клетки энергия, т.е. АТФ, может возобновляться за счет трех основных процессов: анаэробного (бескислородного) гликолиза, аэробного (с участием кислорода) митохондриального окисления, а также благодаря передаче фосфатной группы от КрФ к АДФ.

Креатинфосфатный источник - самый мощный, поскольку реакция КрФ с АДФ протекает очень быстро. Однако запас КрФ в клетке обычно невелик - например, мышцы могут с максимальным усилием работать за счет КрФ не более 6-7 с. Этого обычно достаточно, чтобы запустить второй по мощности - гликолитический - источник энергии. В этом случае ресурс питательных веществ во много раз больше, но по мере работы происходит все большее напряжение гомеостаза из-за образования молочной кислоты, и если такую работу выполняют крупные мышцы, она не может продолжаться более 1,5-2 мин. Зато за это время почти полностью активируются митохондрии, которые способны сжигать не только глюкозу, но также жирные кислоты, запас которых в организме почти неисчерпаем. Поэтому аэробный митохондриальный источник может работать очень долго, правда, мощность его сравнительно невелика - в 2-3 раза меньше, чем гликолитического источника, и в 5 раз меньше мощности креатинфосфатного.

Особенности организации энергопродукции в различных тканях организма. Разные ткани обладают различной насыщенностью митохондриями. Меньше всего их в костях и белом жире, больше всего - в буром жире, печени и почках. Довольно много митохондрий в нервных клетках. Мышцы не обладают высокой концентрацией митохондрий, но ввиду того, что скелетные мышцы - самая массивная ткань организма (около 40 % от массы тела взрослого человека), именно потребности мышечных клеток во многом определяют интенсивность и направленность всех процессов энергетического обмена. И.А.Аршавский называл это «энергетическим правилом скелетных мышц».

С возрастом происходит изменение сразу двух важных составляющих энергетического обмена: изменяется соотношение масс тканей, обладающих разной метаболической активностью, а также содержание в этих тканях важнейших окислительных ферментов. В результате энергетический обмен претерпевает достаточно сложные изменения, но в целом его интенсивность с возрастом снижается, причем весьма существенно.

Живой клетке внутренне присуща неустойчивая и почти неправдоподобная организация; клетка способна сохранять весьма специфичную и прекрасную в своей сложности упорядоченность своей хрупкой структуры только благодаря непрерывному потреблению энергии.

Как только поступление энергии прекращается, сложная структура клетки распадается и она переходит в неупорядоченное и лишенное организации состояние. Помимо обеспечения химических процессов, необходимых для поддержания целостности клетки, в различных типах клеток за счет превращения энергии обеспечивается осуществление разнообразных механических, электрических, химических и осмотических процессов, связанных с жизнедеятельностью организма.

Научившись в сравнительно недавнее время извлекать энергию, заключенную в различных неживых источниках, для выполнения различной работы, человек начал постигать, как мастерски и с какой высокой эффективностью производит превращение энергии клетка. Превращение энергии в живой клетке подчиняется тем же самым законам термодинамики, которые действуют в неживой природе. Согласно первому закону термодинамики, общая энергия замкнутой системы при любом физическом изменении всегда остается постоянной. Согласно второму закону, энергия может существовать в двух формах: в форме «свободной», или полезной, энергии и в форме бесполезной рассеиваемой энергии. Тот же закон утверждает, что при любом физическом изменении наблюдается тенденция к рассеянию энергии, т. е. к уменьшению количества свободной энергии и к возрастанию энтропии. Между тем живая клетка нуждается в постоянном притоке свободной энергии.

Инженер получает необходимую ему энергию главным образом за счет энергии химических связей, заключенной в горючем. Сжигая горючее, он превращает химическую энергию в тепловую; затем он может использовать тепловую энергию для вращения, например, паровой турбины и таким путем получить электрическую энергию. Клетки также получают свободную энергию за счет освобождения энергии химических связей, заключенной в «горючем». Энергия запасается в этих связях теми клетками, которые синтезируют питательные вещества, служащие таким горючим. Однако клетки используют эту энергию весьма специфическим «образом. Поскольку температура, при которой живая клетка функционирует, примерно постоянна, клетка не может использовать тепловую энергию, чтобы производить работу. Для того чтобы за счет тепловой энергии могла происходить работа, теплота должна переходить от более нагретого тела к менее нагретому. Совершенно ясно, что клетка не может сжигать свое горючее при температуре сгорания угля (900°); не может она также выдержать воздействие перегретым паром или током высокого напряжения. Клетке приходится добывать и использовать энергию в условиях довольно постоянной и притом низкой температуры, разбавленной йодной среды и весьма незначительных колебаний концентрации водородных ионов. Для того чтобы приобрести возможность получать энергию, клетка на протяжении многовековой эволюции органического мира совершенствовала свои замечательные молекулярные механизмы, которые необыкновенно эффективно действуют в этих мягких условиях.

Механизмы клетки, обеспечивающие извлечение энергии, делятся на два класса, и на основании различия в этих механизмах все клетки можно разбить на два основных типа. Клетки первого типа называют гетеротрофными; к ним относятся все клетки организма человека и клетки всех высших животных. Этим клеткам необходим постоянный приток готового горючего весьма сложного химического состава. Таким горючим служат для них углеводы, белки и жиры, т. е. отдельные составные части других клеток и тканей. Гетеротрофные клетки получают энергию, сжигая или окисляя эти сложные вещества (вырабатываемые другими клетками) в процессе, который называется дыханием и в котором участвует молекулярный кислород (О 2) атмосферы. Гетеротрофные клетки используют эту энергию для выполнения своих биологических функций, выделяя при этом в атмосферу двуокись углерода в качестве конечного продукта.

Клетки, принадлежащие ко второму типу, называют автотрофными. Наиболее типичные автотрофные клетки - это клетки зеленых растений. В процессе фотосинтеза они связывают энергию солнечного света, используя ее для своих нужд. Кроме того, они при помощи солнечной энергии добывают углерод из атмосферной двуокиси углерода и используют его для построения простейшей органической молекулы - молекулы глюкозы. Из глюкозы клетки зеленых растений и других организмов создают более сложные молекулы, входящие в их состав. Чтобы обеспечить необходимую для этого энергию, клетки в процессе дыхания сжигают часть имеющегося в их распоряжении сырья. Из этого описания циклических превращений энергии в клетке становится ясно, что все живые организмы в конечном счете получают энергию от солнечного света, причем растительные клетки получают ее непосредственно от солнца, а животные - косвенным путем.

Изучение основных поставленных в этой статье вопросов упирается в необходимость подробного описания первичного механизма извлечения энергии, используемого клеткой. Большая часть ступеней сложных циклов дыхания и фотосинтеза уже исследована. Установлено, в каком именно органе клетки происходит тот или иной процесс. Дыхание осуществляется митохондриями, имеющимися в большом числе почти во всех клетках; фотосинтез обеспечивают хлоропласты - цитоплазматические структуры, содержащиеся в клетках зеленых растений. Молекулярные механизмы, которые находятся в этих клеточных образованиях, составляя их структуру и обеспечивая выполнение их функций, представляют собой следующий важный этап в изучении клетки.

Одни и те же хорошо изученные молекулы - молекулы аденозинтрифосфата (АТФ) - переносят полученную за счет питательных веществ или солнечного света свободную энергию от центров дыхания или фотосинтеза во все участки клетки, обеспечивая осуществление всех процессов, протекающих с потреблением энергии. Впервые АТФ был выделен из мышечной ткани Ломаном около 30 лет назад. Молекула АТФ содержит три связанные между собой фосфатные группы. В пробирке концевую группу можно отделить от молекулы АТФ путем реакции гидролиза, в результате которой получается аденозиндифосфат (АДФ) и неорганический фосфат. В процессе этой реакции свободная энергия молекулы АТФ превращается в тепловую энергию, а энтропия при этом в соответствии со вторым законом термодинамики возрастает. В клетке, однако, концевая фосфатная группа в процессе гидролиза не просто отделяется, но переносится на особую молекулу, служащую акцептором. Значительная часть свободной энергии молекулы АТФ при этом сохраняется благодаря фосфорилированию молекулы-акцептора, которая теперь за счет возросшей энергии приобретает возможность участвовать в процессах, протекающих с потреблением энергии, например, в процессах биосинтеза или мышечного сокращения. После отщепления одной фосфатной группы в процессе этой сопряженной реакции АТФ превращается в АДФ. В термодинамике клетки АТФ можно рассматривать как богатую энергией, или «заряженную», форму носителя энергии (аденозинфосфата), а АДФ - как бедную энергией, или «разряженную», форму.

Вторичная «зарядка» носителя производится, конечно, тем или другим из двух механизмов, участвующих в извлечении энергии. В процессе дыхания животных клеток энергия, заключенная в питательных веществах, освобождается в результате окисления и расходуется на построение АТФ из АДФ и фосфата. При фотосинтезе в растительных клетках энергия солнечного света превращается в химическую энергию и расходуется на «зарядку» аденозинфосфата, т. е. на образование АТФ.

Эксперименты с использованием радиоактивного изотопа фосфора (Р 32) показали, что неорганический фосфат с большой скоростью включается в концевую фосфатную группу АТФ и вновь выходит из нее. В клетке почки обновление концевой фосфатной группы происходит так быстро, что ее период полупревращения занимает меньше 1 минуты; это соответствует чрезвычайно интенсивному обмену энергии в клетках этого органа. Следует добавить, что деятельность АТФ в живой клетке - отнюдь не черная магия. Химикам известны многие аналогичные реакции, при помощи которых происходит перенос химической энергии в неживых системах. Сравнительно сложная структура АТФ, по-видимому, возникла только в клетке - для обеспечения наиболее эффективной регуляции химических реакций, связанных с переносом энергии.

Роль АТФ в фотосинтезе удалось выяснить лишь недавно. Это открытие позволило в значительной мере объяснить, каким образом фотосинтезирующие клетки в процессе синтеза углеводов связывают солнечную энергию - первичный источник энергии всех живых существ.

Энергия солнечного света передается в виде фотонов, или квантов; свет различной окраски, или разной длины волны, характеризуется различной энергией. При падении света на некоторые металлические поверхности и поглощении его этими поверхностями фотоны в результате столкновения с электронами металла передают им свою энергию. Этот фотоэлектрический эффект можно измерить благодаря возникающему при этом электрическому току. В клетках зеленых растений солнечный свет с определенными длинами волн поглощается зеленым пигментом - хлорофиллом. Поглощенная энергия переводит электроны в сложной молекуле хлорофилла с основного энергетического уровня на более высокий уровень. Подобные «возбужденные» электроны стремятся вновь возвратиться на свой основной стабильный энергетический уровень, отдавая при этом поглощенную ими энергию. В чистом препарате хлорофилла, выделенного из клетки, поглощенная энергия вновь испускается в форме видимого света, аналогично тому, как это происходит в случае других фосфоресцирующих или флуоресцирующих органических и неорганических соединений.

Таким образом, хлорофилл, находясь в пробирке, сам по себе не способен запасать или использовать энергию света; энергия эта быстро рассеивается, как если бы произошло короткое замыкание. Однако в клетке хлорофилл стерически связан с другими специфическими молекулами; поэтому, когда он под влиянием поглощения света приходит в возбужденное состояние, «горячие», или богатые энергией, электроны не возвращаются в свое нормальное (невозбужденное) энергетическое состояние; вместо этого электроны отрываются от молекулы хлорофилла и переносятся молекулами - переносчиками электронов, которые передают их друг другу по замкнутой цепи реакций. Проделывая этот путь вне молекулы хлорофилла, возбужденные электроны постепенно отдают свою энергию и возвращаются на свои прежние места в молекуле хлорофилла, которая после этого оказывается готовой к поглощению второго фотона. Тем временем энергия, отданная электронами, используется на образование АТФ из АДФ и фосфата - иными словами, на «зарядку» аденозинфосфатной системы фотосинтезирующей клетки.

Переносчики электронов, служащие посредниками в этом процессе фотосинтетического фосфорилирования, еще не вполне установлены. Один из таких переносчиков, по-видимому, содержит рибофлавин (витамин В 2) и витамин К. Другие предварительно отнесены к цитохромам (белки, содержащие атомы железа, окруженные порфириновыми группами, которые по расположению и строению напоминают порфирин самого хлорофилла). По крайней мере два из этих переносчиков электронов способны обеспечить связывание части переносимой ими энергии для восстановления АТФ из АДФ.

Такова основная схема превращения энергии света в энергию фосфатных связей АТФ, разработанная Д. Арноном и другими учеными.

Однако в процессе фотосинтеза происходит, помимо связывания солнечной энергии, еще и синтез углеводов. В настоящее время полагают, что некоторые из «горячих» электронов возбужденной молекулы хлорофилла вместе с ионами водорода, происходящими из воды, вызывают восстановление (т. е. получение дополнительных электронов или атомов водорода) одного из переносчиков электронов - трифосфопиридиннуклеотида (ТПН, в восстановленной форме ТПН-Н).

В процессе ряда темновых реакций, названных так потому, что они могут происходить в отсутствие света, ТПН-Н вызывает восстановление двуокиси углерода до углевода. Большую часть необходимой для этих реакций энергии доставляет АТФ. Характер этих темновых реакций исследован главным образом М. Кальвином и его сотрудниками. Одним из побочных продуктов первоначального фотовосстановления ТПН служит ион гидроксила (ОН —). Хотя мы еще не располагаем полными данными, предполагается, что этот ион отдает свой электрон одному из цитохромов в цепи фотосинтетических реакций, конечным продуктом которых оказывается молекулярный кислород. Электроны движутся по цепи переносчиков, внося свой энергетический вклад в образование АТФ, и, в конце концов растратив всю свою избыточную энергию, попадают в молекулу хлорофилла.

Как и следовало ожидать на основании строго закономерного и последовательного Характера процесса фотосинтеза, молекулы хлорофилла расположены в хлоропластах не беспорядочно и, уж конечно, не просто суспендированы в наполняющей хлоропласты жидкости. Напротив, молекулы хлорофилла образуют в хлоропластах упорядоченные структуры - граны, между которыми располагается разделяющее их переплетение волокон или мембран. Внутри каждой граны плоские молекулы хлорофилла лежат стопками; каждую молекулу можно считать аналогичной отдельной пластинке (электроду) элемента, граны - элементам, а совокупность гран (т. е. весь хлоропласт) - электрической батарее.

Хлоропласты содержат также все те специализированные молекулы - переносчики электронов, которые вместе с хлорофиллом участвуют в извлечении энергии из «горячих» электронов и используют эту энергию для синтеза углеводов. Извлеченные из клетки хлоропласты могут осуществлять весь сложнейший процесс фотосинтеза.

Эффективность этих миниатюрных фабрик, работающих на солнечной энергии, поразительна. В лаборатории при соблюдении некоторых специальных условий можно показать, что в процессе фотосинтеза до 75% света, падающего на молекулу хлорофилла, превращается в химическую энергию; правда, цифру эту нельзя считать вполне точной, и по этому поводу еще происходят дебаты. В поле вследствие неодинаковой освещенности листьев солнцем, а также по ряду других причин эффективность использования солнечной энергии гораздо ниже - порядка нескольких процентов.

Таким образом, молекула глюкозы, представляющая собой конечный продукт фотосинтеза, должна содержать довольно значительное количество солнечной энергии, заключенной в ее молекулярной конфигурации. В процессе дыхания гетеротрофные клетки извлекают эту энергию, постепенно расщепляя молекулу глюкозы, с тем чтобы «законсервировать» содержавшуюся в ней энергию во вновь образующихся фосфатных связях АТФ.

Существуют разные типы гетеротрофных клеток. Одни клетки (например, некоторые морские микроорганизмы) могут жить без кислорода; другим (например, клеткам мозга) кислород абсолютно необходим; третьи (например, мышечные клетки) более разносторонни и способны функционировать как при наличии кислорода в среде, так и при его отсутствии. Кроме того, хотя большинство клеток предпочитает использовать в качестве основного горючего глюкозу, некоторые из них могут существовать исключительно за счет аминокислот или жирных кислот (главным сырьем для синтеза которых служит все та же глюкоза). Тем не менее расщепление молекулы глюкозы в клетках печени можно считать примером процесса получения энергии, типичным для большинства известных нам гетеротрофов.

Общее количество энергии, содержащейся в молекуле глюкозы, определить весьма просто. Сжигая определенное количество (пробу) глюкозы в лаборатории, можно показать, что при окислении молекулы глюкозы образуется 6 молекул воды и 6 молекул двуокиси углерода, причем реакция сопровождается выделением энергии в виде тепла (примерно 690 000 калорий на 1 грамм-молекулу, т. е. на 180 граммов глюкозы). Энергия в форме тепла, конечно, бесполезна для клетки, которая функционирует при практически постоянной температуре. Постепенное окисление глюкозы в процессе дыхания происходит, однако, таким образом, что большая часть свободной энергии молекулы глюкозы сохраняется в удобной для клетки форме.

В итоге клетка получает более 50% всей освободившейся при окислении энергии в форме энергии фосфатных связей. Такой высокий к. п. д. выгодно отличается от того, который обычно достигается в технике, где редко удается превратить в механическую или электрическую энергию более одной трети тепловой энергии, получаемой при сгорании топлива.

Процесс окисления глюкозы в клетке делится на две основные фазы. Во время первой, или подготовительной, фазы, называемой гликолизом, происходит расщепление шестиуглеродной молекулы глюкозы на две трехуглеродные молекулы молочной кислоты. Этот, казалось бы, простой процесс состоит не из одной, а по меньшей мере из 11 ступеней, причем каждая ступень катализируется своим особым ферментом. Может показаться, что сложность этой операции противоречит афоризму Ньютона «Natura entm simplex esi» («природа проста»); однако следует помнить, что назначение этой реакции заключается не в том, чтобы просто расщепить молекулу глюкозы пополам, а в том, чтобы выделить из этой молекулы заключенную в ней энергию. Каждый из промежуточных продуктов содержит фосфатные группы, и в итоге в процессе реакции используются две молекулы АДФ и две фосфатные группы. В конечном счете в результате расщепления глюкозы образуется не только две молекулы молочной кислоты, но, кроме того, еще и две новые молекулы АТФ.

К чему это приводит в энергетическом выражении? Термодинамические уравнения показывают, что при расщеплении одной грамм-молекулы глюкозы с образованием молочной кислоты выделяется 56 000 калорий. Поскольку при образовании каждой грамм-молекулы АТФ связывается 10000 калорий, эффективность процесса улавливания энергии составляет на этой ступени около 36 % - весьма внушительная цифра, если исходить из того, с чем обычно приходится иметь дело в технике. Однако эти 20 000 калорий, превращенные в энергию фосфатных связей, представляют собой лишь ничтожную часть (около 3%) всей энергии, заключенной в грамм-молекуле глюкозы (690 000 калорий). Между тем многие клетки, например, анаэробные клетки или мышечные клетки, находящиеся в состоянии активности (и в это время неспособные к дыханию), существуют за счет этого ничтожного по своей эффективности использования энергии.

После расщепления глюкозы до молочной кислоты аэробные клетки продолжают извлекать большую часть оставшейся энергии в процессе дыхания, во время которого трехуглеродные молекулы молочной кислоты расщепляются на одноуглеродные молекулы двуокиси углерода. Молочная кислота, или, вернее, ее окисленная форма - пировиноградная кислота, претерпевает еще более сложный ряд реакций, причем каждая из этих реакций опять-таки катализируется особой ферментной системой. Сначала трехуглеродное соединение распадается с образованием активированной формы уксусной кислоты (ацетилкофермента А) и двуокиси углерода. Затем «двухуглеродный фрагмент» (ацетилкофермент А) соединяется с четырехуглеродным соединением, щавелевоуксусной кислотой, в результате чего получается лимонная кислота, содержащая шесть атомов углерода. Лимонная кислота в процессе ряда реакций вновь превращается в щавелевоуксусную кислоту, и три углеродных атома пировиноградной кислоты, «поданные» в этот цикл реакций, в конечном счете дают молекулы двуокиси углерода. Эта «мельница», которая «перемалывает» (окисляет) не только глюкозу, но также молекулы жиров и аминокислот, предварительно расщепленные до уксусной кислоты, известна под названием цикла Кребса или цикла лимонной кислоты.

Впервые цикл был описан Г. Кребсом в 1937 г. Открытие это представляет собой один из краеугольных камней современной биохимии, и его автор был удостоен в 1953 г. Нобелевской премии.

Цикл Кребса позволяет проследить окисление молочной кислоты до двуокиси углерода; однако одним этим циклом нельзя объяснить, каким образом заключенные в молекуле молочной кислоты большие количества энергии удается извлечь в форме, пригодной для использования в живой клетке. Этот процесс извлечения энергии, сопровождающий цикл Кребса, в последние годы интенсивно изучается. Общая картина более или менее выяснилась, однако многие детали еще предстоит исследовать. По-видимому, в течение цикла Кребса электроны при участии ферментов отрываются от промежуточных продуктов и передаются по ряду молекул-переносчиков, объединяемых под общим названием дыхательной цепи. Эта цепь ферментных молекул представляет собой конечный общий путь всех электронов, отторгнутых от молекул питательных веществ в процессе биологического окисления. В последнем звене этой цепи электроны в конце концов соединяются с кислородом и образуется вода. Таким образом, распад питательных веществ при дыхании представляет собой процесс, обратный процессу фотосинтеза, при котором удаление электронов из воды приводит к образованию кислорода. Более того, переносчики электронов в дыхательной цепи химически весьма сходны с соответствующими переносчиками, участвующими в процессе фотосинтеза. Среди них имеются, например, рибофлавиновые и цитохромные структуры, сходные с аналогичными структурами хлоропласта. Тем самым подтверждается афоризм Ньютона о простоте природы.

Как и при фотосинтезе, энергия электронов, переходящих по этой цепи к кислороду, улавливается и используется для синтеза АТФ из АДФ и фосфата. Собственно говоря, это происходящее в дыхательной цепи фосфорилирование (окислительное фосфорилирование) изучено лучше, чем фосфорилирование, происходящее при фотосинтезе, которое открыто сравнительно недавно. Твердо установлено, например, существование в дыхательной цепи трех центров, в которых происходит «зарядка» аденозинфосфата, т. е. образование АТФ. Таким образом, на каждую пару электронов, отщепленных от молочной кислоты в течение цикла Кребса, образуется в среднем по три молекулы АТФ.

На основании общего выхода АТФ в настоящее время можно рассчитать термодинамическую эффективность, с которой клетка извлекает энергию, ставшую ей доступной благодаря окислению глюкозы. Предварительное расщепление глюкозы на две молекулы молочной кислоты дает две молекулы АТФ. Каждая молекула молочной кислоты в конечном счете передает в дыхательную цепь шесть пар электронов. Поскольку каждая пара электронов, проходящая по цепи, вызывает превращение трех молекул АДФ в АТФ, в процессе собственно дыхания образуется 36 молекул АТФ. При образовании каждой грамм-молекулы АТФ связывается, как мы уже указывали, около 10 000 калорий и, следовательно, 38 грамм-молекул АТФ связывают примерно 380000 из 690000 калорий, содержавшихся в исходной грамм-молекуле глюкозы. Эффективность сопряженных процессов гликолиза и дыхания можно, таким образом, считать равной по крайней мере 55%.

Чрезвычайная сложность процесса дыхания служит еще одним указанием на то, что участвующие в нем ферментные механизмы не могли бы функционировать, если бы составные части были просто перемешаны в растворе. Подобно тому, как молекулярные механизмы, связанные с фотосинтезом, имеют определенную структурную организацию и заключены в хлоропласте, так и органы дыхания клетки - митохондрии - представляют собой такую же структурно упорядоченную систему.

В клетке в зависимости от ее типа и характера ее функции может находиться от 50 до 5000 митохондрий (клетка печени содержит, например, около 1000 митохондрий). Они достаточно велики (3-4 микрона в длину), чтобы их можно было видеть в обычный микроскоп. Однако ультраструктура митохондрий различима лишь в электронный микроскоп.

На электронных микрофотографиях можно видеть, что митохондрия имеет две мембраны, причем внутренняя мембрана образует складки, заходящие в тело митохондрии. Проведенное недавно исследование митохондрий, выделенных из клеток печени, показало, что молекулы ферментов, участвующих в цикле Кребса, расположены в матриксе, или растворимой части внутреннего содержимого митохондрий, тогда как ферменты дыхательной цепи в форме молекулярных «ансамблей» расположены в мембранах. Мембраны состоят из чередующихся слоев молекул белка и липидов (жиров); такое же строение имеют мембраны в гранах хлоропластов.

Таким образом, существует явное сходство в строении этих двух главных «силовых станций», от которых зависит вся жизнедеятельность клетки, ибо одна из них «запасает» солнечную энергию в фосфатных связях АТФ, а другая превращает энергию, заключенную в питательных веществах, в энергию АТФ.

Успехи современной химии и физики позволили недавно уточнить пространственное строение некоторых больших молекул, например, молекул ряда белков и ДНК, т. е. молекул, содержащих генетическую информацию.

Следующий важный этап изучения клетки состоит в том, чтобы выяснить расположение больших ферментных молекул (которые сами представляют собой белки) в мембранах митохондрий, где они находятся вместе с липидами - расположение, обеспечивающее надлежащую ориентацию каждой молекулы катализатора и возможность ее взаимодействия с последующим звеном всего рабочего механизма. «Монтажная схема» митохондрии уже ясна!

Современные сведения относительно силовых установок клетки показывают, что она оставляет далеко позади не только классическую энергетику, но и новейшие, гораздо более блистательные достижения техники.

Электроника достигла поразительных успехов в компоновке и уменьшении размеров составных элементов счетно-решающих устройств. Однако все эти успехи не идут ни в какое сравнение с совершенно невероятной миниатюрностью сложнейших механизмов превращения энергии, выработанных в процессе органической эволюции и имеющихся в каждой живой клетке.

АТФ – главный переносчик энергии в клетке. Для осуществления любых проявлений жизнедеятельности клеток необходима энергия. Автотрофные организмы получают исходную энергию от солнца в ходе реакций фотосинтеза, гетеротрофные же в качестве источника энергии используют органические соединения, поступающие с пищей. Энергия запасается клетками в химических связях молекул АТФ (аденозинтрифосфат ), которые представляют собой нуклеотид, состоящий из трех фосфатных групп, остатка сахара (рибозы) и остатка азотистого основания (аденина).

Связь между фосфатными остатками получила название макроэргической, поскольку при ее разрыве выделяется большое количество энергии. Обычно клетка извлекает энергию из АТФ, отщепляя только концевую фосфатную группу. При этом образуется АДФ (аденозиндифосфат), фосфорная кислота и освобождается 40 кДж/моль.

Молекулы АТФ играют роль универсальной энергетической разменной монеты клетки. Они поставляются к месту протекания энергоемкого процесса, будь ферментативный синтез органических соединений, работа белков-молекулярных моторов или мембранных транспортных белков и др. Обратный синтез молекул АТФ осуществляется путем присоединения фосфатной группы к АДФ с поглощением энергии. Запасание клеткой энергии в виде АТФ осуществляется в ходе реакций энергетического обмена. Он тесно связан с пластическим обменом, в ходе которого клетка производит необходимые для ее функционирования органические соединения.

Обмен веществ и энергии в клетке (метаболизм).

Метаболизмом обозначают совокупность всех реакций пластического и энергетического обмена, связанных между собой. В клетках постоянно идет синтез углеводов, сложных жиров, нуклеиновых кислот. Одним из важнейших процессов в пластическом обмене является биосинтез белков. Синтез соединений в ходе реакций пластического обмена всегда энергозатратен и идет при непременном участии АТФ.

Одним из источников энергии для образования АТФ служит ферментативное расщепление поступающих в клетку органических соединений (белков, жиров и углеводов). В ходе этого процесса высвобождается энергия, которая аккумулируется в АТФ. Особую роль в энергетическом обмене клетки играет расщепление глюкозы. Этот сахар синтезируется в результате реакций фотосинтеза и может накапливаться в клетках в виде полисахаридов: крахмала и гликогена. По мере необходимости полисахариды распадаются, а молекулы глюкозы претерпевают ряд последовательных превращений.

Первый этап, получивший название гликолиз, проходит в цитоплазме клеток и не требует кислорода. В результате последовательных реакций с участием ферментов глюкоза распадается на две молекулы пировиноградной кислоты . При этом задействуются две молекулы АТФ, а высвобождающейся при расщеплении химических связей энергии хватает на производство четырех молекул АТФ. В итоге энергетический выход гликолиза невелик и составляет две молекулы АТФ:

С 6 Н 12 О 6 → 2С 3 Н 4 О 3 + 4Н + + 2АТФ

В анаэробных условиях (при отсутствии кислорода) дальнейшие превращения связаны с различными типами брожений .

Всем известно молочнокислое брожение (скисание молока), которое проходит благодаря деятельности молочнокислых грибков и бактерий. По механизму оно сходно с гликолизом, только окончательным продуктом здесь является молочная кислота. Этот тип брожения проходит в клетках при дефиците кислорода, например, в интенсивно работающих мышцах. Близко к молочному и спиртовое брожение . Различие заключается лишь в том, что продуктами при спиртового брожения являются этиловый спирт и углекислый газ.

Следующий этап, в ходе которого пировиноградная кислота окисляется до углекислого газа и воды, получил название клеточного дыхания . Связанные с дыханием реакции проходят в митохондриях растительных и животных клеток и только при наличии кислорода. Во внутренней среде митохондрий происходит ряд химических превращений вплоть до конечного продук-та – углекислого газа. При этом на различных этапах этого процесса образуются промежуточные продукты распада исходного вещества с отщеплением атомов водорода. Атомы водорода, в свою очередь, участвуют в ряде других химических реакций, итогом которых является выделение энергии и «консервация» ее в химических связях АТФ и образование молекул воды. Становится понятным, что именно для того, чтобы связать отщепленные атомы водорода, и нужен кислород. Данный ряд химических превращений достаточно сложный и происходит с участием внутренних мембран митохондрий, ферментов, белков-переносчиков.

Клеточное дыхание имеет чрезвычайно высокую эффективность. Происходит энергетический синтез 30 молекул АТФ, еще две молекулы образуются при гликолизе и шесть молекул АТФ образуются как результат превращений на мембранах митохондрий продуктов гликолиза. Всего в результате окисления одной молекулы глюкозы образуется 38 молекул АТФ:

С 6 Н 12 О 6 + 6О 2 → 6СО 2 + 6Н 2 О + 38АТФ

В митохондриях проходят конечные этапы окисления не только сахаров, но и других органических соединений – белков и липидов. Эти вещества используются клетками, главным образом, когда подходит к концу запас углеводов. Вначале расходуется жир, при окислении которого выделяется существенно больше энергии, чем из равного объема углеводов и белков. Поэтому жир у животных представляет собой основной «стратегический резерв» энергетических ресурсов. У растений же роль энергетического резерва играет крахмал. При хранении он занимает значительно больше места, чем энергетически эквивалентное ему количество жира. Для растений это не служит помехой, поскольку они неподвижны и не носят, как животные, запасы на себе. Извлечь же энергию из углеводов можно гораздо быстрее, чем из жиров. Белки выполняют в организме многие важные функции, поэтому вовлекаются в энергетический обмен только при исчерпании ресурсов сахаров и жиров, например, при длительном голодании.

Фотосинтез. Фотосинтез – это процесс, в ходе которого энергия солнечных лучей преобразуется в энергию химических связей органических соединений. В растительных клетках связанные с фотосинтезом процессы протекают в хлоропластах. Внутри этой органеллы находятся системы мембран в которые встроены пигменты, улавливающие лучистую энергию солнца. Основной пигмент фотосинтеза – хлорофилл, который поглощает преимущественно синие и фиолетовые, а также красные лучи спектра. Зеленый свет при этом отражается, поэтому сам хлорофилл и содержащие его части растений кажутся зелеными.

Различают хлорофиллы a , b , c , d , формулы которых имеют незначительные отличая. Главный из них – хлорофилл a , без него фотосинтез невозможен. Остальные хлорофиллы, называемые вспомогательными, способны улавливать свет несколько иной волны, чем хлорофилл a , что расширяет спектр поглощения света при фотосинтезе. Ту же роль играют и каротиноиды, воспринимающие кванты синего и зеленого света. В разных группах растительных организмов распределение дополнительных хлорофиллов неодинаково, что используется в систематике.

Собственно улавливание и преобразование лучистой энергии происходит во время световой фазы . При поглощении квантов света хлорофилл переходит в возбужденное состояние и становится донором электронов. Его электроны передаются от одного белкового комплекса к другому по цепи переноса электронов. Белки этой цепи, как и пигменты, сосредоточены на внутренней мембране хлоропластов. При переходе электрона по цепи переносчиков он теряет энергию, которая используется для синтеза АТФ.

Под действием солнечного света в хлоропластах происходит также расщепление молекул воды – фотолиз, при этом возникают электроны, которые возмещают потери их хлорофиллом; в качестве побочного продукта, при этом образуется кислород.

Таким образом, функциональный смысл световой фазы заключается в синтезе АТФ и НАДФ·Н путем преобразования световой энергии в химическую.

Из всех улавливающих кванты света пигментов только хлорофилл a способен передавать электроны в цепь переноса. Остальные пигменты сначала передают энергию возбужденных светом электронов хлорофиллу a , а от него уже начинается описанная выше цепочка реакций световой фазы.

Для реализации темновой фазы фотосинтеза свет не нужен. Суть проходящих здесь процессов заключается в том, что полученные в световую фазу молекулы используются в серии химических реакций, «фиксирующих» СО 2 в форме углеводов. Все реакции темновой фазы осуществляются внутри хлоропластов, а освобождающиеся при «фиксации» углекислоты вещества вновь используются в реакциях световой фазы.

Суммарное уравнение фотосинтеза имеет вид:

6СО 2 + 6Н 2 О –→ С 6 Н 12 О 6 + 6О 2

Взаимосвязь и единство процессов пластического и энергетического обмена. Процессы синтеза АТФ происходят в цитоплазме (гликолиз), в митохондриях (клеточное дыхание) и в хлоропластах (фотосинтез). Все осуществляющиеся в ходе этих процессов реакции – это реакции энергетического обмена. Запасенная в виде АТФ энергия, расходуется в реакциях пластического обмена для производства необходимых для жизнедеятельности клетки белков, жиров, углеводов и нуклеиновых кислот. Заметим, что темновая фаза фотосинтеза – это цепь реакций пластического обмена, а световая – энергетического.

В химических реакциях при образовании связей между простыми молекулами энергия потребляется, а при разрыве выделяется.

В процессе фотосинтеза у зеленых растений энергия солнечного света переходит в энергию химических связей, возникающих между молекулами углекислого газа и воды. Образуется молекула глюкозы: CO 2 + H 2 O + Q (энергия) = C 6 H 12 O 6 .

Глюкоза является главным источником энергии для человека и большинства животных.

Процесс усвоения этой энергии называют " окислительное фосфорилирование". Энергия (Q), выделяющаяся при окислении, сразу используется на фосфорилирование аденозиндифосфорной кислоты (АДФ):

АДФ+Ф+Q (энергия)=АТФ

Получается "универсальная энергетическая валюта" клетки аденозинтрифосфорная кислота (АТФ). Она может в любой момент быть использована на любую полезную организму работу или на согревание.

АТФ®АДФ+Ф+Q (энергия)

Процесс окисления глюкозы проходит в 2 этапа.

1. Анаэробное (бескислородное) окисление, или гликолиз, происходит на гладкой эндоплазматической сети клетки. В результате этого глюкоза оказывается разорванной на 2 части, а выделившейся энергии достаточно для синтеза двух молекул АТФ.

2. Аэробное (кислородное) окисление. Две части от глюкозы (2 молекулы пировиноградной кислоты) при наличии кислорода продолжают ряд окислительных реакций. Этот этап протекает на митохондриях и приводит к дальнейшему разрыву молекул и выделению энергии.

Результатом второго этапа окисления одной молекулы глюкозы является образование 6 молекул углекислого газа, 6 молекул воды и энергии, которой достаточно для синтеза 36 молекул АТФ.

В качестве субстратов для окисления на втором этапе могут использоваться не только молекулы, полученные из глюкозы, но и молекулы, полученные в результате окисления липидов, белков, спиртов и других энергоемких соединений.

Активная форма уксусной кислоты - А-КоА (ацетил коэнзим А, или ацетил кофермент А) - это промежуточный продукт окисления всех этих веществ (глюкозы, аминокислот, жирных кислот и других).

А-КоА является точкой пересечения углеводного, белкового и липидного обменов.

При избытке глюкозы и других энергонесущих субстратов организм начинает их депонировать. В этом случае, глюкоза окисляется по обычному пути до молочной и пировиноградной кислоты, затем до А-КоА. Далее, А-КоА становится базой для синтеза молекулы жирных кислот и жиров, которые депонируются в подкожной жировой клетчатке. Наоборот, при недостатке глюкозы, ее синтезируют из белков и жиров через А-КоА (глюконеогенез).

При необходимости могут пополняться и запасы заменимых аминокислот для строительства некоторых белков.

ЭНЕРГЕТИКА ЖИВОЙ КЛЕТКИ

Ключевые процессы, определяющие разницу между живой и неживой природой, происходят на клеточном уровне. Решающую роль в трансформации и переносе энергии внутри живой клетки играет движение электронов. Но энергия никоим образом не зарождается внутри самих клеток: она поступает извне. Специальные молекулярные механизмы лишь замедляют ее движение в десятки тысяч раз, позволяя другим молекулам частично использовать эту энергию при выполнении полезной для клетки работы. Нерастраченная энергия уходит во внешнюю среду в виде тепла. Подробнее об основных принципах энергетики живой клетки и о новых открытиях российских учёных в этой области рассказывает Татьяна Васильевна ПОТАПОВА, ведущий научный сотрудник НИИФХБ им. А.Н. Белозерского, доктор биологических наук.

Дети Солнца

Вселенная наполнена энергией, но для живых организмов подходят лишь немногие её виды. Основной источник энергии для подавляющего большинства биологических процессов на нашей планете -солнечный свет.

Клетка - основная единица жизни, она непрерывно работает для поддержания своей структуры, а потому нуждается в постоянном притоке свободной энергии. Технологически решить такую задачу ей непросто, поскольку живая клетка должна использовать энергию при постоянной (и притом довольно низкой) температуре в разбавленной водной среде. В ходе эволюции, за сотни миллионов лет, сформировались изящные и совершенные молекулярные механизмы, способные действовать необыкновенно эффективно в очень мягких условиях. В итоге КПД клеточной энергетики оказывается намного выше, чем у любых инженерных устройств, изобретённых человеком.

Клеточные трансформаторы энергии представляют собой комплексы специальных белков, встроенных в биологические мембраны. Независимо от того, поступает в клетку извне свободная энергия непосредственно с квантами света (в процессе фотосинтеза) или в результате окисления пищевых продуктов кислородом воздуха (в процессе дыхания), она запускает движение электронов. В итоге производятся молекулы адено-зинтрифосфата (АТФ) и увеличивается разность электрохимических потенциалов на биологических мембранах.

АТФ и мембранный потенциал - два относительно стационарных источника энергии для всех видов внутриклеточной работы. Напомним, что молекула адено-зинтрифосфата - очень ценное эволюционное приобретение. Энергия, добытая из внешнего источника, запасается в виде "высокоэнергетических связей" между фосфатными группами. АТФ весьма охотно отдает свои фосфатные группы либо воде, либо другим молекулам, поэтому он незаменимый посредник для переноса химической энергии.

Электрические явления

в клеточной энергетике

Механизм создания АТФ оставался загадкой долгие годы, пока не обнаружилось, что данный процесс по сути своей является электрическим. В обоих случаях: и для дыхательной цепи (набора белков, которые осуществляют окисление субстратов кислородом) и для аналогичного фотосинтетического каскада, - генерируется ток протонов через мембрану, в которую погружены белки. Токи обеспечивают энергией синтез АТФ, а также служат источником энергии для некоторых видов работы. В современной биоэнергетике принято считать АТФ и протонный ток (точнее, протонный потенциал) альтернативными и взаимно конвертируемыми энергетическими валютами. Некоторые функции оплачиваются одной валютой, некоторые - другой.

© Т.В. Потапова

К середине XX в. биохимики точно знали, что в бактериях и митохондриях электроны переходят от восстанавливаемых субстратов к кислороду через каскад электронных переносчиков, называемых дыхательной цепочкой. Загадка была в том, каким способом сопряжены перенос электрона и синтез АТФ. На протяжении 10 с лишним лет надежда открыть секрет вспыхивала и вновь угасала. Решающую роль сыграло не преодоление технических трудностей, а концептуальная разработка. Сопряжение оказалось в принципе не химическим, а электрическим. В 1961 г. английский учёный П. Митчелл опубликовал в журнале "Nature" радикальную идею для разрешения биохимической загадки века: хемиосмотическую гипотезу. Идея Митчелла была поистине революционной сменой парадигм, трансформацией концептуальной основы и поначалу вызывала бурные споры.

В 1966 г. Митчелл пишет свою первую книгу "Хемиосмотическое сопряжение в окислительном и фотосинтетическом фос-форилировании". В том же году российские учёные, биофизик Е. Либерман и биохимик В. Скулачёв, придумали, как экспериментально подтвердить правоту Митчелла. С помощью синтетических ионов, проникающих через биологическую мембрану, они показали, что дыхание и фосфорилирова-ние действительно связаны через протонный потенциал. Еще один серьезный шаг в поддержку Митчелла сделали биофизики биофака МГУ А. Булычёв, В. Андрианов, Г. Курелла и Ф. Литвин. Используя микроэлектроды, они зарегистрировали образование трансмембранной разности электрических потенциалов при освещении крупных хлоропластов.

Ещё несколько лет споров и дотошных проверок в разных лабораториях по всему свету - и идеи Митчелла, наконец, были признаны. Он был принят в Королевское общество Великобритании (и, соответственно, стал сэром), получил множество престижных международных наград, а в 1978 г. был удостоен Нобелевской премии, которая, вопреки традициям, на сей раз была вручена не за открытие нового явления, а за догадку о его существовании.

Цепь переноса электрона оказалась не просто связана с мембраной, но вплетена в нее таким образом, что при движении электрона от субстрата к кислороду прото-

ны перемещаются с внутренней поверхности наружу. Мембрана образует замкнутый пузырек, который плохо пропускает протоны, поэтому в результате "выкачивания" протонов генерируется разность потенциалов через мембрану: электрическая отрицательность внутри. Одновременно увеличивается рН: защелачивается среда внутри пузырька. Протоны снаружи оказываются под гораздо более высоким электрохимическим потенциалом, чем внутри, как бы под "давлением" со стороны и электрического потенциала, и градиента рН, которые толкают протоны обратно через мембрану внутрь пузырька. Живая клетка использует энергию таких протонов для совершения разных видов работы.

Поразительные успехи рентгенострук-турного анализа белков позволили увидеть полные пространственные структуры отдельных белковых комплексов, входящих в состав дыхательной цепи. Белки цепи переноса электронов, локализованные в мембранах митохондрий, способны менять свой спектр поглощения, получая и отдавая электроны. Микроспектральные методы позволяют проследить последовательность передачи электронов по цепочке белков и выяснить, в каких именно местах часть свободной энергии электронов используется для синтеза АТФ.

Согласно идее Митчелла, для синтеза АТФ из АДФ и фосфата в мембранах митохондрий используется электрическая энергия. Следовательно, если снять разность потенциалов через мембрану, можно предположить, что синтез прекратится. Именно такой эффект был продемонстрирован в ходе экспериментов на искусственных мембранах с использованием спе- 0 циально синтезированных ионов, резко § повышающих проводимость мембран для протонов. 1

Одни из первых экспериментальных § доказательств верности гипотезы Мит- « челла были получены в нашей стране в | 1970 г. под руководством Е.А. Либермана * и В.П. Скулачёва. В качестве индикато- га-ров изменений электрического поля на I мембране были использованы синтетиче- § ские ионы, отличающиеся по своей при- " роде и знаку заряда, но сходные в одном: | все они легко проникали через фосфо- * липидную плёнку. После многих попыток = сложилась следующая изящная экспериментальная модель.

Каплю фосфолипидов, растворённых в органическом растворителе, подносят к небольшому отверстию в тефлоновой пластинке, и оно мгновенно закрывается плоской бимолекулярной плёнкой - искусственной мембраной. Тефлоновую пластинку с искусственной мембраной погружают в сосуд с электролитом, разделяя его на два отсека со своим измерительным электродом в каждом. Остаётся встроить в искусственную мембрану белок, способный генерировать электричество, а в электролит добавить проникающие ионы. Тогда работа белкового генератора, изменяющего разность потенциалов на мембране, приведет к перемещению проникающих ионов через фосфолипидную плёнку, что и будет зарегистрировано в виде изменения разности потенциалов между отсеками.

Ещё более убедительная экспериментальная модель, позволяющая проводить прямые измерения электрического тока, генерируемого клеточными органеллами и отдельными белками, была разработана и успешно использована Л.А. Драчёвым, А.А. Кауленом и В.П. Скулачёвым. Частицы, генерирующие электрический ток (митохондрии, хроматофоры бактерий или липидные пузырьки с встроенными в них индивидуальными белками), заставляли слипаться с плоской искусственной мембраной. После этого протонный ток, созданный молекулами-генераторами в ответ на вспышку света или добавление соответствующих химических субстратов, обнаруживался напрямую измерительными электродами по обе стороны искусственной мембраны.

В 1973 г. У. Стокениус и Д. Остерхельт

0 из США открыли необычный светочувс-§ твительный белок в мембранах фиолето-j: вых бактерий, обитающих в соленых озе-

1 рах Калифорнийских пустынь. Этот белок, § подобно зрительному пигменту глаза жи-« вотных - родопсину, содержал производ-1 ное витамина А - ретиналь, за что и был * назван бактериородопсином. Американ-я- ские ученые Рэкер и Стокениус изящно 1 продемонтрировали участие бактериоро-§ допсина в энергетическом сопряжении. " Объединив в модельной фосфолипидной | мембране только что открытый светочувс-I твительный белок фиолетовых бактерий с = АТФ-синтазой, они получили молекулярный ансамбль, способный синтезировать АТФ при включении света.

В конце 1973 г. академик Ю.А. Овчинников организовал проект "Родопсин" для сравнительного исследования животного и бактериального светочувствительных пигментов. В рамках проекта в лаборатории В.П. Скулачёва в МГУ в модельных экспериментах на искусственных мембранах было доказано, что бактериородопсин -белковый генератор электрического тока. Встроенный

 

Возможно, будет полезно почитать: