Электрохимические потенциалы. Электрохимия Что такое электрохимический потенциал

Электродные процессы. Понятие о скачках потенциалов и электродвижущей силе (ЭДС). Электрохимические цепи, гальванические элементы. Стандартный водородный электрод, стандартный электродный потенциал. Классификация электрохимических цепей и электродов.

9.1 Электрохимические системы. Электрод. Электрохимический потенциал. Абсолютные электродные потенциалы и электродвижущая сила.

Взаимное превращение электрической и химической форм энергии происходит в электрохимических системах включающих в себя:

    проводники второго рода – вещества, обладающие ионной проводимостью (электролиты).

    проводники первого рода – вещества, обладающие электронной проводимостью.

На границе раздела двух фаз происходит перенос электрического заряда, т.е. возникает скачок потенциала ().

Система, состоящая из контактирующих проводников первого и второго рода, называется электродом .

Процессы, протекающие на границе раздела фаз проводников I и II рода в электродах, называются электродными процессами .

Электрод представляет собой систему, состоящую, как минимум, из двух фаз.

Рассмотрим, как возникает скачек потенциала – электродный потенциал - на границе раздела металл–раствор соли этого металла. При погружении металлической пластинки в раствор соли некоторая часть ионов металла с поверхности пластинки может перейти в раствор, прилегающий к поверхности пластинки. Металл заряжается отрицательно, и возникающие электростатические силы препятствуют дальнейшему протеканию этого процесса. В системе устанавливается равновесие. Возможен и обратный процесс перехода катионов металла из раствора на пластинку. Указанные процессы приводят к возникновению двойного электрического слоя и скачка потенциала.

Направление процесса переноса ионов металла определяется соотношением электрохимических потенциалов ионов () в фазе раствора и конденсированной фазе. Процесс идет до выравнивания электрохимических потенциалов в двух фазах.

Электрохимический потенциал состоит из двух слагаемых

=
.

m хим. - химический потенциал который характеризует химический отклик на изменение окружения данной частицы.

m эл - электрическая составляющая электрохимического потенциала или потенциальная энергия электрического поля которая характеризует отклик на электрическое поле.

Для определенного сорта заряженных частиц (i)

, где

z i – заряд иона,

внутренний потенциал , отвечающий работе переноса элементарного отрицательного заряда из бесконечности в вакууме вглубь фазы.

Равновесие электрохимической системы характеризуется равенством электрохимических (а не химических) потенциалов заряженных частиц в различных фазах.

В равновесной системе раствор(I)/металл (II), имеем:

.

В неравновесной системе работа переноса одного моль-экв. ионов из фазы I в фазу II равна

.

Так как , то

В равновесии, с учетом (1), имеем:

,

где
– скачок на границе раздела фаз (абсолютный электродный потенциал). Обозначим

,

где
‑ скачок потенциала на границе раздела фаз приа i = 1 (стандартный электродный потенциал ).

Стандартный потенциал представляет собой величину, характерную для данного электродного процесса. Он зависит от температуры и природы электрода. Тогда для электрода типа Me Z+ /Me:

. (1)

Скачок потенциала возникает и на границе раздела двух растворов, это диффузионный потенциал
.

В общем виде (для любого типа электродов):

(2)

или для 298 K

Следует помнить, что если в электродной реакции учувствуют газы, то активность принимается равной парциальному давлению; для конденсированной фазы постоянного состава состава, а =1.

Уравнения (1), (2), называют уравнениями Нернста для электродного потенциала. Разность электрических потенциалов экспериментально можно измерить только между двумя точками одной и той же фазы где μ i = const . При перемещении элементарного заряда между двумя точками, находящимися в разных фазах, кроме электрической, должна совершаться работа, связанная с изменением химического окружения заряда. Величина этой химической составляющей работы не поддается определению, поэтому абсолютное значение электродного потенциала
измерить невозможно. Опытным путем можно определить только величину ЭДС гальванического элемента, состоящего из двух электродов.

Правила записи электродов и электрохимических цепей.

Системы, состоящие из двух и более электродов, соединенные особым образом и способные производить электрическую работу, т. е. служить источником электрической энергии, называются гальваническими элементами .

Электродвижущая сила гальванического элемента (ЭДС ГЭ) это сумма скачков электродных потенциалов на всех границах раздела фаз в условии равновесия (ток во внешней цепи равен нулю).

a) Для электродов приняты следующие правила записи: вещества, находящиеся в растворе, указываются слева от вертикальной черты, справа указываются вещества, образующие другую фазу (газ или твердое вещество).

Если одна фаза содержит несколько веществ, то их символы разделяются запятыми.

Например,


.

Уравнение электродной реакции для отдельного электрода записывается так, чтобы слева располагались вещества в окисленной форме и электроны, справа – вещества в восстановленной форме:

,

,

.

б) При записи гальванических элементов слева располагается электрод, имеющий более отрицательный потенциал; растворы обоих электродов отделяются друг от друга вертикальной пунктирной линией, если они контактируют друг с другом, и двумя сплошными линиями, если между растворами находится солевой мостик, например, насыщенный раствор КCl, с помощью которого устраняется диффузионный потенциал. Таким образом, справа всегда указывается положительно заряженный электрод, слева – отрицательно заряженный.

В качестве примера электрохимической цепи, рассмотрим гальванический элемент, состоящий из серебряного

и медного

электродов,. Схематически рассматрива­емый элемент записывается в следующем виде:

где сплошная вертикальная линия обозначает границу раздела металл–раствор, а вертикальная пунктирная – границу раздела раствор–раствор.

В результате работы элемента на медном электроде будет происходить процесс окисления:

,

а на серебряном электроде процесс восстановления:

.

Процессы окисления и восстановления в гальваническом элементе пространственно разделены.

Электрод, на котором протекает процесс окисления , называется анодом (
).

Электрод, на котором протекает процесс восстановления , называется катодом (
).

Реакции на катоде и аноде называются электродными реакциями.

Суммарный химический процесс, протекающий в гальваническом элементе, складывается из электродных процессов и выражается уравнением:

Если электродные процессы и химическая реакция в гальваническом элементе могут быть осуществлены в прямом (при работе элемента) и обратном (при пропускании электрического тока через элемент) направлениях, то такие электроды и гальванический элемент носят название обратимых.

В дальнейшем будут рассматриваться только обратимые электроды и гальванические элементы.

Если какой-либо металл соприкасается с электролитом, то на металле и в электролите появляются заряды противоположного знака. При этом металл приобретает относительно электролита определенный электрический потенциал, который называют электрохимическим потенциалом. Возникновение электрохимических потенциалов было объяснено Нернстом.

Электрохимический потенциал зависит от рода металла и концентрации электролита. При этом имеет значение только концентрация в растворе ионов самого металла, так как только ионы могут переходить между металлом и раствором. Наличие же других ионов в электролите не оказывает влияния на электрохимический потенциал.

Если концентрацию ионов металла в растворе поддерживать постоянной, то электрохимический потенциал будет зависеть только от рода металла и будет характеризовать его способность насыщать раствор ионами.

Любой гальванический элемент имеет два электрода. ЭДС гальванического элемента (напряжение при разомкнутой цепи) равна разности электрохимических потенциалов его электродов (j 1 - j 2).

Зная электрохимические потенциалы металлов, из которых состоят электроды, можно найти ЭДС химического источника тока.

ЭДС гальванического элемента это – максимальная работа химических реакций, рассчитанная на единицу заряда. Для приближенной оценки предполагается, что максимальная работа равна полной энергии, освобождаемой при химических реакциях. Тогда

где p 1 и p 2 – тепловые эффекты реакций на обоих электродах (рассчитанные на 1 кг вещества электрода);

k 1 и k 2 – электрохимические эквиваленты вещества электродов.

Тепловые эффекты реакций на обоих электродах p 1 и p 2 и электрохимические эквиваленты вещества электродов k 1 и k 2 можно представить в виде

; ; ; , (7.50)

где Q 1 и Q 2 – тепловые эффекты реакций на 1 килограмм-атом;

A 1 и A 2 – атомные веса материалов электродов;

Z 1 и Z 2 – валентности;

F – число Фарадея.

Тогда для ЭДС химического источника тока, будем иметь

. (7.51)

Надо отметить, что в гальванических элементах энергия, выделяемая в химических реакциях, непосредственно превращается в энергию электрического тока. Этот процесс обладает большим коэффициентом полезного действия, чем применяемый на обычных электростанциях. Поэтому гальванические элементы (химические источники тока) представляют большой принципиальный интерес.

Однако стоимость электроэнергии, получаемой от гальванических элементов, значительно выше стоимости энергии, вырабатываемой на обычных электростанциях, так как в элементах расходуется не дешевое топливо (например, уголь), а дорогостоящие вещества (например, цинк). В связи с этим химические источники тока (гальванические элементы) применяют только в тех случаях, где требуется небольшая энергия (где стоимость ее не играет роли), но важны портативность и простота источника тока.

При замыкании химического источника тока на внешнюю цепь сила тока в цепи не постоянна, а уменьшается с течением времени.


7.7. Электрический ток через электролиты.
Закон Ома для электролитов

Растворы солей, кислот и щелочей в воде и в других растворителях хорошо проводят электрический ток. Это связано с тем, что молекулы растворенного вещества диссоциируют, т.е. распадаются на положительные и отрицательные ионы. Если при растворении не происходит диссоциации молекул, то раствор не является проводником электрического тока.

Определим плотность тока j в жидкости, т.е. заряд, переносимый за одну секунду через площадку единичной площади, перпендикулярную направлению движения ионов (рис. 7.17). Так как перенос зарядов осуществляется ионами обоих знаков, то

где q + и q - – заряды положительных и отрицательных ионов;

n + и n - – концентрации этих ионов;

v + и v - – средние скорости упорядоченного движения этих ионов.

Учитывая, что раствор в целом нейтрален, можно записать

, (7.53)

где q – заряд иона любого знака;

n – концентрация ионов этого же знака.

Величина заряда иона обусловлена потерей или сохранением валентных электронов при диссоциации молекулы. Обозначив валентность иона через z, для заряда иона будем иметь

где e – абсолютное значение заряда электрона.

Учитывая формулы (7.53) и (7.54), получим

. (7.55)

В электрическом поле на ионы действуют две силы: сила, действующая со стороны электрического поля, и сила внутреннего трения.

Сила со стороны электрического поля

где E – величина напряженности электрического поля.

Сила внутреннего трения, если предположить, что ион имеет форму шара с радиусом r, то согласно закону Стокса

, (7.57)

где h – коэффициент вязкости жидкости.

При установившемся движении (которое наступает практически одновременно с появлением электрического поля) F E = F тр, следовательно имеем

, (7.58)

где – подвижность иона.

Таким образом, подвижность иона b равна отношению скорости движения иона к напряженности электрического поля:

Как видно из формулы (7.58), подвижность ионов возрастает с повышением температуры (за счет уменьшения вязкости жидкости). Скорость движения ионов пропорциональна напряженности электрического поля.

Учитывая соотношение (7.58) для плотности электрического тока, получим

(7.60)

где - удельная проводимость электролита.

Выражения (7.60) и (7.61) представляют собой закон Ома в дифференциальной форме для электролитов.

Из формулы (7.60) для удельного сопротивления электролита имеем

. 7.62)

Так как с повышением температуры подвижность и концентрация ионов возрастают, то, согласно формуле (7.62), с повышением температуры сопротивление электролитов уменьшается.

Концентрация ионов зависит от степени диссоциации, характеризующейся коэффициентом диссоциации a . Коэффициент диссоциации определяется отношением концентрации n ионов к концентрации n o молекул растворенного вещества:

Концентрация недиссоциированных молекул

. (7.65)

В растворе одновременно и непрерывно происходит как диссоциация молекул, так и молизация ионов, т.е. соединение ионов в нейтральные молекулы. В условиях равновесия интенсивности процессов диссоциации молекул и молезации ионов, изменяющих состав раствора в противоположных направлениях, равны. В процессе диссоциации молекул скорость изменения концентрации ионов каждого знака пропорциональна концентрации n " недиссоциированных молекул:

, (7.66)

где b – коэффициент пропорциональности.

Скорость изменения концентрации недиссоциированных молекул в результате ионизации ионов пропорциональна произведению концентраций положительных и отрицательных ионов:

, (7.67)

где h - коэффициент пропорциональности.

При равновесии , поэтому с учетом (7.66) и (7.67) можно получить формулу, связывающую коэффициент диссоциации с концентрацией растворенного вещества:

. (7.68)

Очевидно, что коэффициент диссоциации зависит от концентрации растворенного вещества. При очень слабой концентрации (n o » 0) равенство (7.68) дает

Если a<<1, то из (7.68) получаем

. (7.70)

Таким образом, коэффициент диссоциации уменьшается при увеличении концентрации растворенного вещества.

С учетом уравнение для плотности тока в электролитах можно записать так:

. (7.71)

Подвижность ионов и коэффициент диссоциации в широких пределах изменения напряженности электрического поля не зависят от напряженности электрического поля E.

При небольшой концентрации раствора коэффициент диссоциации и сумма подвижностей ионов (b + + b -) приблизительно постоянны. Следовательно, при малой концентрации раствора электропроводимость пропорциональна концентрации. При увеличении концентрации зависимость электропроводности от концентрации значительно усложняется.

Надо отметить, что величина тока через столб электролита в любом его сечении одна и та же, хотя на первый взгляд она должна быть разной.

Представим, что имеется три сечения столба электролита 1, 2, 3 (рис. 7.18).

Через сечение 1 проходят только отрицательные ионы, через сечение 3 – только положительные ионы, а через сечение 2 – и те и другие. Поэтому создается впечатление, что ток через сечение 2 больше, чем через сечения 1 и 3. Это неверно, ток через любое сечение должен быть одним и тем же, иначе между сечениями будет накапливаться заряд. Выполнение закона сохранения заряда в электролитах обусловлено тем, что скорость упорядоченного движения и концентрация ионов разных знаков непостоянны вдоль выбранной оси ОХ.

В центральной области столба электролита концентрации положительных и отрицательных ионов примерно равны, следовательно, объемная плотность заряда близка к нулю. У положительного электрода (анода) скапливаются отрицательные ионы. Объемная плотность заряда отрицательна. У отрицательного электрода (катода) имеется положительный объемный заряд.

На рис. 7.19 показано изменение потенциала между электродами (при заданной разности потенциалов между ними), вызванное объемными зарядами. Сплошная линия соответствует изменению потенциала в вакууме, пунктирная – в том же пространстве, заполненном электролитом. На рис. 7.20 для сравнения показано изменение потенциала в межэлектродном промежутке, в который введены две сетки. Левая сетка заряжена отрицательно по отношению к аноду и имитирует отрицательный объемный заряд. Правая сетка заряжена положительно по отношению к катоду и имитирует положительный объемный заряд. Сравнение кривых изменения потенциала в межэлектродном пространстве показывает, что изменение потенциала в первом и втором случаях почти одинаково.

Постоянство величины электрического тока в электролитах обусловлено тем, что напряженность электрического тока, а следовательно, и скорость упорядоченного движения ионов в разных точках объема диэлектрика разные. В центральной области они меньше, чем в других областях.

Живые системы на всех уровнях организации - открытые системы. Поэтому транспорт веществ через биологические мембраны - необходимое условие жизни. С переносом веществ через мембраны связаны процессы метаболизма клетки, биоэнергетические процессы, образование биопотенциалов, генерация нервного импульса и др. Нарушение транспорта веществ через биомембраны приводит к различным патологиям. Лечение часто связано с проникновением лекарств через клеточные мембраны. Эффективность лекарственного препарата в значительной степени зависит от проницаемости для него мембраны. Большое значение для описания транспорта веществ имеет понятие электрохимического потенциала.

Химическим потенциалом данного вещества m к называется величина, численно равная энергии Гиббса, приходящаяся на один моль этого вещества. Математически химический потенциал определяется как частная производная от энергии Гиббса, G по количеству k-гo вещества, при постоянстве температуры Т, давления Р и количеств всех других веществ m l (l¹k).

m k = (¶G/¶m k) P , T , m

Для разбавленного раствора концентрации вещества С:

m = m 0 + RTlnC

где m 0 - стандартный химический потенциал, численно равный химическому потенциалу данного вещества при его концентрации 1 моль/л в растворе.

Электрохимический потенциал m- величина, численно равная энергии Гиббса G на один моль данного вещества, помещенного в электрическом поле.

Для разбавленных растворов

m = m o + RTlnC + ZFj (1)

где F = 96500 Кл/моль - число Фарадея, Z - заряд иона электролита (в элементарных единицах заряда), j - потенциал электрического поля, Т [К] – температура.

Транспорт веществ через биологические мембраны можно разделить на два основных типа: пассивный и активный.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Витебск
УО «ВГУ им. П. М. Машерова» УДК 577(075) ББК 28.071я73 Б 63 Печатается по решению научно-методического совета

Биофизика как наука. Предмет биофизики
Теоретические вопросы: 1. Предмет и задачи биофизики. Уровни биофизических исследований; методы исследования и требования, предъявляемые к ним. 2. Исто

Предмети задачи биофизики. История развития биофизики
Биофизика – это наука, изучающая физические и физико-химические процессы, протекающие в биосистемах на разных уровнях организации и являющиеся основой физиологических актов. Её возникновение обусло

Методология биофизики
Введем определение следующих терминов: объект биофизического исследования, биологическая система, методика, метод, методология. Биологическая система - совокупность взаимосвязанных определенным обр

Термодинамика биологических процессов
Теоретические вопросы: 1. Предмет и методы термодинамики. Основные понятия термодинамики. 2. Параметры состояния (интенсивные и экстенсивные) Функция с

Теорема И. Пригожина. Уравнения Онзагера
Постулат И. Пригожина состоит в том, что общее изменение энтропии dS открытой системы может происходить независимо либо за счет процессов обмена с внешней средой (deS

Связь энтропии и информации. Количество биологической информации, ее ценность
Согласно формуле Больцмана, энтропия определяется как логарифм числа микросостояний, возможных в данной макроскопической системе: S = kБ ln W

Биомембранология. Структура и свойства биологических мембран
Теоретические вопросы: 1. Структура клеточных мембран. 2. Виды биологических мембран. 3. Белки в структуре клеточных мембран, их строе

Основные функции биологических мембран
Элементарная живая система, способная к самостоятельному существованию, развитию и воспроизведению - это живая клетка - основа строения всех животных и растений. Важнейшими условиями существования

Структура биологических мембран
Первая модель строения биологических мембран была предложена в 1902 г. Было замечено, что через мембраны лучше всего проникают вещества, хорошо растворимые в липидах, и на основании этого было сдел

Фазовые переходы липидов в мембранах
Вещество при разных температуре, давлении, концентрациях химических компонентов может находиться в различных физических состояниях, например газообразном, жидком, твердом, плазменном. Кристаллическ

Физика процессов транспорта веществ через биологические мембраны
Теоретические вопросы: 1. Пути проникновения веществ через клеточные мембраны. 2. Движущие силы мембранного транспорта. 3. Виды трансп

Пассивный перенос веществ через мембрану
Пассивный транспорт - это перенос вещества из мест с большим значением электрохимического потенциала к местам с его меньшим значением.

Активный транспорт веществ. Опыт Уссинга
Активный транспорт - это перенос вещества из мест с меньшим значением электрохимического потенциала в места с его большим значением. Активный транспорт в мембране сопр

Электрогенные ионные насосы
Согласно современным представлениям, в биологических мембранах имеются ионные насосы,работающие за счет свободной энергии гидролиза АТФ, - специальные системы интегральных белков (

Мембранный потенциал
Одна из важнейших функций биологической мембраны - генерация и передача биопотенциалов. Это явление лежит в основе возбудимости клеток, регуляции внутриклеточных процессов, работы нервной системы,

Распространение нервного импульса вдоль возбудимого волокна
Если в каком-нибудь участке возбудимой мембраны сформировался потенциал действия, мембрана деполяризована, возбуждение распространяется на другие участки мембраны. Рассмотрим распространение возбуж

Свойства ионных каналов клеточных мембран
Модель возбудимой мембраны по теории Ходжкина-Хаксли предполагает регулируемый перенос ионов через мембрану. Однако непосредственный переход иона через липидный бислой весьма затруднен. Поэтому вел

Типы управляемых каналов и насосы
1) «Ворота» канала системой «рычагов» соединены с диполем, который может поворачиват

Участие мембран в передаче межклеточной информации
Важное свойство всех живых существ – способность воспринимать, перерабатывать и передавать информацию при помощи биологических мембран. Несмотря на громадное разнообразие различных систем получения

G-белки и вторичные мессенджеры
От первого звена - рецептора (R) сигнал поступает на так называемые N- или G-белки – мембранные белки, активирующиеся при связывании гуанозинтрифосфата (ГТФ). G-белки способны передавать информацию

Молекулярные основы проведения нервного импульса в нервных волокнах и синапсах
Природа создала два принципиально различных способа межклеточной сигнализации. Один из них состоит в том, что сообщения передаются при помощи электрического тока; во втором используются молекулы, п

Специальные механизмы транспорта веществ через биомембрану (эндо- и экзоцитоз)
Транспортные белки обеспечивают проникновение через клеточные мембраны многих полярных молекул небольшого размера, однако они не способны транспортировать макромолекулы, например, белки, полинуклео

Биофизика как наука
1. Ремизов А.Н. Медицинская и биологическая физика: учеб. для вузов / А.Н. Ремизов, А.Г. Максина, А.Я. Потапенко. – М., 2003. – С. 14–17. 2. Биофизика: учеб. для вузов / В. Ф. Антонов [и

Биофизика мембран. Структура и функции биологических мембран. Динамика биомембран. Модельные липидные мембраны
1. Ремизов А.Н. Медицинская и биологическая физика: учеб. для вузов / А.Н. Ремизов, А.Г. Максина, А.Я. Потапенко. – М., 2003. – С. 184–190. 2. Рубин А.Б. Биофизика клеточных процессов. М.

Транспорт веществ через биологические мембраны. Биоэлектрические потенциалы
1. Ремизов А.Н. Медицинская и биологическая физика: учеб. для вузов / А.Н. Ремизов, А.Г. Максина, А.Я. Потапенко. – М., 2003. – С. 191–213. 2. Биофизика: учеб. для вузов / В.Ф. Антонов [

    Общие положения электрохимии.

    Растворы электролитов.

    Электролитическая диссоциация воды.

    Гальванический элемент. Элемент Даниэля – Якоби.

    Возникновение электродных потенциалов.

    Водородный электрод. Измерение электродных потенциалов. Стандартные электродные потенциалы.

    Уравнение Нернста.

    Электродный потенциал водородного электрода.

    Классификация электрохимических систем.

    Химические цепи.

    Окислительно-восстановительные реакции.

    Электролиз.

ОБЩИЕ ПОЛОЖЕНИЯ ЭЛЕКТРОХИМИИ.

Электрохимия - это наука, которая изучает процессы, протекающие благодаря электричеству, либо в процессе которых образуется электричество, т.е. взаимные переходы химической и электрической энергии.

Приведенная ниже реакция может быть проведена химическим и электрохимическим путем.

Fe 3+ +Cu + = Fe 2+ +Cu 2+

Химическая реакция.

1. Непосредственное столкновение участников приводит к тому, что путь электрона очень краток.

2. Столкновение происходит в любой части реакционной системы. Отсюда следует ненаправленность взаимодействия.

3. Энергетические эффекты выражаются в виде теплоты.

Электрохимическая реакция .

1. Путь электрона должен быть велик по сравнению с размерами электрона. Отсюда следует то, что участники реакции должны быть пространственно разделены.

2. Непосредственный контакт между участниками реакции заменяется на контакт с металлическими электродами.

3. Требуется реакционное пространство.

4. Электрод является катализатором - это приводит к снижению энергии активации процесса.

Составные части электрохимической системы :

1. электролиты - вещества, расплавы или растворы которых проводят электрический ток,

2. электроды - электронные проводники электрического тока,

3. внешняя цепь - металлические проводники, соединяющие электроды.

Растворы электролитов.

Теория электролитической диссоциации.

Теория предложена Аррениусом в 1883-1887 г. и в дальнейшем получила развитие в работах Менделеева и Каблукова.

Согласно этой теории, при растворении в воде электролита происходит распад его на противоположно заряженные ионы. Положительно заряженные ионы называются катионами ; к ним относятся, например, ионы металлов и водорода (H +). Отрицательно заряженные ионы называются анионами , к ним принадлежат ионы кислотных остатков и гидроксид-ионы.

Процесс распада молекул веществ на ионы называется под действием полярных молекул растворителя, а также при их расплавлении называется электролитической диссоциацией . Распадаться на ионы могут только те молекулы, химическая связь в которых имеет достаточно высокую степень ионности.

Доля молекул, распавшихся на ионы называется степенью диссоциации и обычно обозначается .

Где n - число распавшихся молекул, N - общее число молекул

 – количественная характеристика электролитов:

 >30% - сильные электролиты;

3%< >30% - элекролиты средней силы:

 <3% - слабые электролиты.

К сильным электролитам относятся кислоты: HClO 4 , HCl, HNO 3 , HBr, H 2 SO 4 ; гидроксиды щелочных и щелочноземельных металлов, многие соли с ионной кристаллической решеткой, хорошо растворимые в воде.

К электролитам средней силы - кислоты: HF, H 3 PO 4 , H 2 SO 3 ; малорастворимые в воде гидроксиды металлов, различные соли.

Слабыми электролитами являются кислоты: H 2 CO 3 , H 2 S, HCN; большинство органических кислот, гидроксиды d-элементов, малорастворимые в воде соли.

Степени диссоциации различных электролитов приведены в соответствующих таблицах.

Второй количественной характеристикой электролитов является константа диссоциации . Связь К д и можно рассмотреть на примере бинарного электролита. Бинарный электролит - это электролит, состоящий из однозарядного аниона и катиона.

С - общая концентрация раствора;

С а - концентрация недиссоциированных молекул;

С + - концентрация катионов;

С – - концентрация анионов.

, где С + = С- = С ; C а = (1-)С

- закон разбавления Оствальда.

Степень диссоциации зависит от концентрации электролита, температуры и давления.

Константа диссоциации K д зависит от температуры и давления.

По способности диссоциировать различают 4 класса электролитов:

1. Основания диссоциируют с образованием ОН – и основного остатка. Диссоциация протекает ступенчато и обратимо.

Диссоциация по первой ступени.

По второй ступени

2. Кислоты диссоциируют ступенчато и обратимо с образованием Н + и кислотного остатка.

1 ступень;

- 2 ступень.

3. Диссоциация амфолитов протекает по основному или кислотному механизму в зависимости от условий.

4. Соли являются сильными электролитами. Их диссоциация необратима; тип связи - ионный.

Способность к электролитической диссоциации зависит не только от самого электролита, но и от растворителя.

По закону Кулона электростатическое притяжение (F ) двух разноименных зарядов (q 1 и q 2), расстояние между которыми r:

 – диэлектрическая проницаемость среды, то есть, чем больше диэлектрическая проницаемость среды, тем слабее взаимодействуют между собой частицы, тем вероятнее произойдет ионизация молекул. Поэтому растворители с высокой диэлектрической проницаемостью обладают сильной ионизирующей способностью. Большая диэлектрическая проницаемость воды не является единственной причиной ее высокого ионизирующего действия. Дипольный характер молекул воды, обладающих неподеленными электронными парами, обусловливает ее значительную способность к образованию гидратированных ионов за счет донорно-акцепторного взаимодействия, а выделяющаяся при этом энергия гидратации ионов компенсирует энергию, необходимую для преодоления сил электростатического притяжения ионов в кристаллической решетке вещества. В растворителях с малой диэлектрической проницаемостью ионы продолжают достаточно сильно притягиваться друг к другу, оставаясь в виде ионных пар.

В химической термодинамике для характеристики свойств систем, не содержащих заряженные частицы, и в которых изменение состава происходит в результате протекания химических реакций или фазовых превращений используют фундаментальное уравнение Гиббса, выраженное через характеристическую функцию :

где - химический потенциал -го реагента, а - бесконечно малое изменение количества этого реагента.

При рассмотрении явлений в гетерогенных системах, необходимо учитывать к какой фазе относятся величины , , , , . Принадлежность к определенной фазе указывается верхним индексом, например - , . Условием равновесия в гетерофазной системе при постоянных температуре и давлении (Т и Р – const) является равенство химических потенциалов , где и - химические потенциалы нейтрального вещества в двух сосуществующих фазах.

Если компонент представляет собой заряженную частицу, то его состояние зависит еще и от величины электрического поля. При перемещении заряженных частиц в фазе в электрическом поле, перенос массы компонента связан с переносом заряда . Фундаментальное уравнение Гиббса в этом случае должно иметь вид:

где - - внутренний потенциал какой либо фазы, то есть внутренний потенциал той части системы, в которой находится данная частица.

Внутренним потенциалом называется работа переноса единичного отрицательного воображаемого заряда из бесконечно удаленной точки А, находящейся в вакууме, в точку В, находящуюся внутри проводящей фазы .

Термин «воображаемый» предполагает, что этот единичный заряд реагирует только на внешнее электрическое поле и не взаимодействует со средой.

Так как , где - заряд -го иона с учетом знака заряда; - постоянная Фарадея, - число молей i -го вещества, то после преобразований получаем:

Все производные энергии Гиббса по обобщенным координатам имеют смысл обобщенных сил. Поэтому - это обобщенная сила в явлениях переноса заряженных частиц в электрическом поле. По аналогии с химическим потенциалом, для электрохимических систем, величина

Называется электрохимическим потенциалом .

При перемещении одного моля реальных заряженных частиц (с зарядом ) из бесконечности в вакууме вглубь проводящей фазы (например, фазы ), затраченная работа состоит из двух частей: электростатической равной и химической, обусловленной взаимодействием реальных частиц с данной фазой, то есть химическим потенциалом компонента в фазе .

Фундаментальное уравнение Гиббса тогда запишется:

Рассмотрим равновесие на границе раздела фаз. Предположим, что на границе раздела фаз протекает электрохимическая реакция (электродная реакция)


где и - стехиометрический коэффициент i -го вещества или иона (для исходных веществ стехиометрические коэффициенты принимают отрицательные значения, а для продуктов реакции - положительные), z - общее число электронов участвующих в электродной реакции (полуреакции).

При протекании химической реакции количества отдельных реагентов изменяются пропорционально их стехиометрическим коэффициентам в уравнении реакции. Взаимную пропорциональность величин dn i можно выразить совокупностью уравнений:

Таким образом, перераспределение количеств всех веществ в системе можно выразить с помощью единственной переменной, которая обозначается x и называется химической переменной . Дифференциал химической переменной определяется с помощью любого из приведенных выше уравнений:

dn i = n I dx ;

Тогда с учетом этого выражения для dG получим

dG = – S dT + V dp + . (3.5)

При постоянной температуре и постоянном давлении условием равновесия в системе является минимум энергии Гиббса. Это означает, что для равновесной системы

В этом уравнении суммируются электрохимические потенциалы и стехиометрические коэффициенты всех участников электрохимической реакции, независимо от того, в какой фазе они находятся.

Равновесие на электроде характеризуется равенством электрохимических потенциалов компонентов во всех фазах. В случае их неравенства происходит переход заряженных частиц через границу раздела фаз, что вызывается стремлением системы к термодинамическому равновесию. В результате этого нарушается баланс электрических зарядов в каждой фазе, металл и раствор приобретают электрический заряд и на границе их раздела возникает скачок потенциала. Другими словами между фазами электрода возникает определенная разность потенциалов, обусловленная природой составляющих электрод компонентов, их концентрациями и значениями внешних термодинамических параметров .

Этот скачек потенциала называется гальвани-потенциалом (потенциалом электрода) и обозначается . Гальвани-потенциал определяется разностью внутренних потенциалов обеих фаз: .

Рис. Возникновение скачка потенциала (гальвани-потенциала ) на границе раздела фазы и фазы .

Рассмотрим механизм возникновения скачка потенциала на примере наиболее часто встречающихся электродов с границей раздела фаз металл – раствор. Существуют такие металлы, что если их опустить в воду или в раствор, то ионы металла переходят в прилегающий к поверхности металла слой воды или раствора по реакции .

Этот переход происходит в том случае, если электрохимический потенциал иона металла в кристалле больше чем электрохимический потенциал сольватированного иона в растворе. Металл можно представить состоящим из положительно заряженных ионов металла и относительно свободных электронов. По мере перехода ионов в раствор, состояние системы постепенно изменяется. Металл приобретает отрицательный заряд, величина которого увеличивается по мере протекания электрохимической реакции. В связи с этим электрохимический потенциал ионов металла на поверхности уменьшается. Количество ионов в растворе возрастает, и их электрохимический потенциал увеличивается вследствие отталкивания одноименных ионов. В результате этого скорость перехода ионов в раствор уменьшается, а скорость обратного процесса – перехода ионов из раствора на металл возрастает. Наконец наступает такое состояние, при котором скорости обоих процессов становятся одинаковыми, то есть в системе наступает равновесие. При этом металл приобретает отрицательный заряд, которому соответствует определенный потенциал, а в растворе образуется избыток катионов, которые удерживаются у поверхности металлического электрода в результате действия электростатических сил и этому слою соответствует свой потенциал. Эти потенциалы называются внутренними потенциалами и обозначаются , где индекс указывает, к какой фазе относится потенциал. В результате, на границе раздела фаз металл – раствор образуется, так называемый двойной электрический слой , которому соответствует определенная разность потенциалов, называемая гальвани-потенциалом -

(например, ).

Для определения величины гальвани-потенциала, возникающего на границе раздела фаз и необходимо экспериментально определить разность электрохимических потенциалов в этих фазах. Так как , то

Из уравнения следует, что измерение гальвани-потенциала между точками в разных фазах возможно лишь при условии равенства химических потенциалов веществ в разных фазах, то есть при . В этом случае, получим:

Отсюда следует, что на границе раздела двух фаз различного состава экспериментально определить гальвани-потенциал невозможно.

Величина гальвани-потенциала зависит от свойств фаз, образующих границу раздела и от концентрации ионов в растворе.

В общем случае, для электрохимической реакции

протекающей на границе раздела фаз, условие равновесия, в соответствие с (3.6) запишется:

где и - заряды частиц окисленной и восстановленной форм, и - потенциалы фаз, содержащих окисленную и восстановленную формы вещества. После преобразования уравнения получим:

В соответствии с балансом зарядов ,

где - суммарный заряд ионов, участвующих в реакции в фазе, содержащей восстановленную форму вещества, а - суммарный заряд ионов, участвующих в реакции в фазе, содержащей окисленную форму вещества. Для произвольных жидких и твердых растворов химический потенциал i -го компонента выражается через его активность уравнением . Учитывая, что - гальвани-потенциал, получаем:

Так как стандартный химический потенциал компонента равен значению его стандартной энергии Гиббса, получим

j °, которая называется

где j ° - стандартный электродный потенциал; R – универсальная газовая постоянная;

T –температура, К; F – постоянная Фарадея; - число электронов, участвующих в электродном процессе; и - активность окисленной и восстановленной форм.

Полученное уравнение называется уравнением Нернста. Стандартный электродный потенциал j ° - это величина, характерная для каждого электродного процесса, которая также зависит от температуры и природы растворителя. Стандартный электродный потенциал равен потенциалу электрода в котором отношение активностей всех участников электродной реакции равны единице. Уравнение Нернста связывает величину разности потенциалов между фазой раствора электролита и фазой проводника первого рода с активностями компонентов, участвующих в электродной реакции.

В качестве примера установления электрохимического равновесия рассмотрим наиболее простой случай – равновесие на границе металла с раствором, содержащим ионы этого металла. На электроде будет протекать следующая электрохимическая реакция:

Равновесие устанавливается в результате перехода ионов металла из объема раствора на металл и обратно при условии выполнения равенства (3.6) .

Объединив все постоянные величины в одну величину - j °, которая называется стандартным электродным потенциалом , получим выражение для разности потенциалов между фазами, составляющими электрод:

Комбинация констант R, F и температуры (RT / F) часто встречается в электрохимических уравнениях; она имеет размерность напряжения. Общепринято обозначать ее как b 0 . Часто уравнение Нернста записывается через десятичные логарифмы. Переход к десятичным логарифмам осуществляется путем умножения b 0 на ln10 = 2,3 (это произведение обозначается как b). При 298 К значения b 0 и b соответственно равны:

Значения постоянной b при других температурах могут быть легко рассчитаны.

Следует отметить, что в общем случае при записи уравнения Нернста под логарифмом остаются только те величины, которые могут варьироваться. Таким образом, при записи уравнения Нернста для разных случаев необходимо соблюдать несколько правил, связанных с применением выражения (3.9) для различных типов электродов:

1. Активности чистых компонентов, образующих отдельную фазу постоянного состава, (как правило, это твердые вещества) принимаются равными единице.

2. Активность растворителя принимается равной единице.

3. Вместо активностей газообразных веществ в уравнение входят относительные парциальные давления этих газов над раствором . Давление приводится относительно стандартного (1 бар = 10 5 Па), т. о. эта величина является безразмерной, хотя численно она совпадает с парциальным давлением газа, выраженным в барах.

Использование парциальных давлений справедливо для случая не очень высоких давлений (порядка нескольких бар). В случае высоких давлений необходимо использовать фугитивности газов.

 

Возможно, будет полезно почитать: