Всасывание (абсорбция). Гидрофильно-липофильные мазевые основы Биодоступность липофильных и гидрофильных лекарств заключение

Вопросы компьютерных тестов по Фармакологии на занятии № 4 по теме

«Фармакокинетика» - 200 8 год

Понятие «фармакокинетика» включает:

Фармакологические эффекты.

$Всасывание лекарственных веществ (ЛВ).

$Распределение ЛВ по органам и тканям.

Взаимодействие ЛВ со специфическими рецепторами.

$Депонирование ЛВ в организме.

$Биотрансформацию ЛВ.

$Выведение ЛВ из организма.

Введение лекарственных средств через пищеварительный тракт обозначают термином:

$Энтеральное введение.

Парентеральное введение.

Введение лекарственных средств, минуя пищеварительный тракт, обозначают термином:

Энтеральное введение.

$Парентеральное введение.

Энтеральные пути введения лекарственных средств:

$Сублингвально.

Подкожно.

$Трансбуккально.

$В двенадцатиперстную кишку.

$Ректально.

Внутримышечно.

Парентеральные пути введения лекарственных средств:

$Подкожно.

$Внутримышечно.

$Внутриартериально.

$Внутривенно.

Трансбуккально.

$Трансдермально.

Ректально.

Для введения лекарственных веществ внутрь характерны:

$Зависимость всасывания слабых электролитов от рН среды.

$Зависимость всасывания веществ от содержимого и моторики ЖКТ.

$Всасывание лекарственных веществ в воротную вену.

Всасывание лекарственных веществ в системный кровоток, минуя печень.

$Элиминация при первом прохождении через печень.

Внутримышечно можно вводить:

$Изотонические растворы.

Гипертонические растворы.

$Масляные растворы.

Взвеси веществ нельзя вводить:

$Внутривенно.

Подкожно.

Внутримышечно.

$Внутриартериально.

Под оболочки мозга.

Лекарственные вещества всасываются непосредственно в системный кровоток при введении:

$Сублингвально.

$Трансбуккально.

В двенадцатиперстную кишку.

В вену нельзя вводить:

Гипертонические растворы.

$Суспензии.

$Масляные растворы.

Лекарственные препараты должны быть стерильными при введении:

$Подкожно.

Сублингвально.

$Внутримышечно.

$Внутривенно.

Интраназально.

$Под оболочки мозга.

Ингаляционно.

При сублингвальном и трансбуккальном введении лекарственные вещества:

Всасываются с большей поверхности, чем при введении внутрь.

$Начинают действовать быстрее, чем при введении внутрь.

$Попадают в системный кровоток, минуя печень.

$Всасываются путем пассивной диффузии.

Лучше всасываются, если они гидрофильны.

Всасывание лекарственных веществ из полости рта может быть ограничено вследствие:

$Небольшой величины всасывающей поверхности.

Недостаточного кровоснабжения слизистой оболочки полости рта.

$Гидрофильности соединений.

Высокой липофильности соединений.

Основной механизм всасывания лекарственных веществ в пищеварительном тракте:

Фильтрация.

Пиноцитоз.

$Пассивная диффузия.

Активный транспорт.

Облегченная диффузия.

Пассивная диффузия липофильных веществ через мембраны клеток определяется:

$Степенью липофильности вещества.

Диаметром пор мембран.

$Трансмембранным градиентом концентрации вещества.

$Величиной всасывающей поверхности.

$Толщиной мембраны

Всасывание лекарственных веществ из кишечника против градиента концентрации может обеспечиваться:

Фильтрацией.

Пассивной диффузией.

$Активным транспортом.

Облегченной диффузией.

Активный транспорт лекарственных веществ через мембраны:

$Требует затраты энергии.

Осуществляется по градиенту концентрации.

$Специфичен по отношению к определенным веществам.

$Является насыщаемым процессом.

*1 8

Основные механизмы всасывания лекарственных веществ при подкожном и внутримышечном введении:

$Пассивная диффузия.

Активный транспорт.

Облегченная диффузия.

$Фильтрация через межклеточные промежутки.

* 19

#1 Всасывание лекарственных веществ путем фильтрации:

Не зависит от величины молекул лекарственных веществ.

Характерно для липофильных лекарственных веществ.

$Характерно для гидрофильных веществ.

$Зависит от величины межклеточных промежутков.

Всасывание из ЖКТ слабых электролитов при повышении степени их ионизации:

Усиливается.

$Ослабляется.

Не изменяется.

*2 1

Всасывание слабых кислот из желудочно-кишечного тракта увеличивается при изменении рН среды:

$В кислую сторону.

В щелочную сторону.

Всасывание слабых оснований из желудочно-кишечного тракта увеличивается при изменении рН среды:

В кислую сторону.

$В щелочную сторону.

*2 3

При внутримышечном введении хорошо всасываются:

Только неполярные липофильные соединения.

Только полярные гидрофильные соединения.

$Как липофильные, так и гидрофильные соединения.

При внутримышечном введении гидрофильные полярные соединения:

$Хорошо всасываются в кровь.

Не всасываются.

Всасываются только в ионизированном состоянии.

*2 5

При подкожном и внутримышечном введении лекарственные вещества всасываются в основном путем:

$Пассивной диффузии.

Активного транспорта.

Облегченной диффузии.

$Фильтрации через межклеточные промежутки.

*2 6

Путем фильтрации через межклеточные промежутки всасываются:

Липофильные соединения.

Как липофильные, так и гидрофильные соединения.

$Гидрофильные соединения.

*2 7

При ингаляционном введении лекарственные вещества:

$всасываются путем пассивной диффузии.

Хорошо всасываются если они гидрофильны.

Попадают в системный кровоток через печеночный барьер.

$непосредственно всасываются в системный кровоток.

* 28

Через гистогематические барьеры из крови в ткани легче проникают:

$Неионизированные молекулы слабых электролитов.

Более равномерно распределяются в организме:

$Липофильные соединения.

Гидрофильные соединения.

Связывание лекарственных веществ с белками плазмы крови:

$Относится к процессу депонирования лекарственных веществ.

Является строго специфичным (избирательным по отношению к определенным веществам).

$Является конкурентным процессом (одно вещество может вытеснять другое из связи с белком).

$Пролонгирует действие лекарственных веществ.

Лекарственные вещества, связанные с белками плазмы крови:

$ Не проникают через эндотелий сосудов.

Обладают фармакологической активностью.

$Высвобождаются из связи с белками при снижении концентрации свободного вещества в крови.

$Являются депо данного лекарственного вещества в крови.

Фильтруются в почечных клубочках.

*3 2

Лекарственные вещества, интенсивно связывающиеся с белками плазмы крови:

Быстрее метаболизируются.

Быстрее выводятся из организма.

$Действуют более продолжительно.

*3 3

Как связывание с белками плазмы крови влияет на почечную экскрецию лекарственных веществ?

Ускоряет.

$Замедляет.

Не изменяет.

*3 4

К процессам метаболической трансформации относятся:

$Гидролиз.

Образование соединений с глюкуроновой кислотой.

$Восстановление.

Метилирование.

$Окисление.

*3 5

К процессам конъюгации относятся:

Гидролиз.

$Ацетилирование.

$ Образование соединений с глюкуроновой кислотой.

$Метилирование.

Окисление.

*3 6

Преимущественная направленность процесса биотрансформации лекарственных веществ под влиянием микросомальных ферментов:

$Повышение полярности.

Повышение липофильности.

$Повышение гидрофильности.

Повышение токсичности.

*3 7

Микросомальные ферменты печени воздействуют преимущественно на:

$Липофильные соединения.

Гидрофильные соединения.

* 38

Микросомальные ферменты печени воздействуют на липофильные соединения, потому что:

$Липофильные вещества легко проникают через мембраны гепатоцитов.

Микросомальные ферменты обладают субстратной специфичностью в отношении липофильных веществ.

Липофильные вещества взаимодействуют со специфическими рецепторами гепатоцитов.

* 39

$Может происходить образование активных метаболитов.

Активность веществ всегда снижается.

*4 0

При биотрансформации лекарственных веществ:

$Может происходить образование более токсичных веществ.

Токсичность веществ всегда снижается.

*4 1

Метаболиты и конъюгаты лекарственных веществ, по сравнению с исходными веществами, как правило:

$Более гидрофильны.

Более липофильны.

$Менее токсичны.

*4 2

Биотрансформация лекарственных веществ обычно приводит к образованию метаболитов и конъюгатов, которые:

$Хуже реабсорбируются в почечных канальцах.

Лучше реабсорбируются в почечных канальцах.

$Быстрее выводятся из организма.

Медленнее выводятся из организма.

*4 3

Скорость биотрансформации лекарственных веществ снижена:

$У детей в первые месяцы жизни.

$У лиц пожилого возраста.

$При заболеваниях печени.

При применении индукторов микросомальных ферментов печени.

$При применении ингибиторов микросомальных ферментов печени.

*4 4

Скорость биотрансформации большинства лекарственных веществ увеличивается:

$При индукции микросомальных ферментов печени.

При ингибировании микросомальных ферментов печени.

При связывании веществ с белками плазмы крови.

При заболеваниях печени.

$При увеличении скорости печеночного кровотока.

*4 5

Выделение большинства лекарственных веществ и продуктов их биотрансформации из организма происходит преимущественно:

$Через почки.

$С желчью в просвет кишечника.

Через легкие.

*4 6

Лекарственные вещества могут выделяться:

$Потовыми железами.

$Слезными железами.

$Слюнными железами.

$Молочными железами.

$Бронхиальными железами.

Ничем из перечисленного.

Газообразные лекарственные вещества выделяются преимущественно:

Почками.

$Через легкие.

Через кожу.

В почечных канальцах хорошо реабсорбируются:

Полярные гидрофильные соединения.

$Неполярные липофильные соединения.

* 49

Почками эффективнее выводятся:

$Полярные гидрофильные соединения.

Неполярные липофильные соединения.

Пассивная реабсорбция в почечных канальцах характерна для:

Полярных гидрофильных соединений.

$Неполярных липофильных соединений.

Почечная экскреция слабых электролитов при повышении их ионизации:

$Увеличивается.

Уменьшается.

Не изменяется.

Для ускорения выведения почками слабокислых соединений реакцию первичной мочи необходимо изменить:

В кислую сторону.

$В щелочную сторону.

Для ускорения выведения почками слабых оснований реакцию первичной мочи необходимо изменить:

В щелочную сторону.

$В кислую сторону.

В почках ограничена фильтрация:

Липофильных веществ.

Гидрофильных веществ.

Слабых кислот.

Слабых оснований.

$Веществ, связанных с белками плазмы крови.

Липофильные вещества по сравнению с гидрофильными:

$Хорошо всасываются при энтеральном введении.

$Более равномерно распределяются в органах и тканях.

Выводятся, преимущественно, в неизмененном виде.

$Легко подвергаются реабсорбции в почках.

Не проникают через гистогематические барьеры.

Полярные лекарственные вещества:

Хорошо всасываются при энтеральном введении путем пассивной диффузии.

$Плохо проходят через гистогематические барьеры.

Выводятся, преимущественно, в виде метаболитов и конъюгатов.

Легко подвергаются реабсорбции в почках.

$Быстро выводятся почками в неизмененном виде.

Понятие биодоступность определяется как:

Степень всасывания лекарственного вещества при введении внутрь.

$Часть введенной дозы лекарственного вещества, которая достигла системного кровотока.

Количество введенного вещества, которое достигло места действия.

Биодоступность лекарственного вещества при введении внутрь в основном зависит от:

$Степени всасывания вещества в ЖКТ.

Связывания с белками плазмы крови.

$Элиминации вещества при первом прохождении через печень

Период полуэлиминации (период полужизни) определяется как:

$Время, за которое концентрация вещества в плазме крови снижается на 50%.

Время, равное половине периода полной элиминации вещества.

Время, за которое количество вещества в организме снижается на 50%.

$Неполярные липофильные вещества хорошо всасываются из ЖКТ.

$Основной механизм всасывания лекарственных веществ из ЖКТ - пассивная диффузия.

Гидрофильные вещества всасываются из ЖКТ лучше, чем липофильные.

Активный транспорт - основной механизм всасывания веществ из ЖКТ.

Отметьте правильные утверждения:

$Неполярные липофильные вещества всасываются с поверхности кожи и слизистых оболочек путем пассивной диффузии.

$Всасывание полярных гидрофильных веществ с поверхности кожи и слизистых оболочек затруднено.

Всасывание веществ с поверхности кожи и слизистых оболочек не зависит от степени ионизации.

Отметьте правильные утверждения:

$Основные пути всасывания лекарственных веществ при подкожном и внутримышечном введении - пассивная диффузия и фильтрация.

При подкожном и внутримышечном введении липофильные вещества всасываются путем фильтрации.

$Липофильные вещества могут всасываться путем пассивной диффузии при всех путях введения.

$Гидрофильные вещества хорошо всасываются при подкожном и внутримышечном введении.

Отметьте правильные утверждения:

$Липофильные вещества в отличие от гидрофильных лучше всасываются из ЖКТ и равномерно распределяются в организме.

Липофильные вещества быстрее выводятся почками, чем гидрофильные вещества.

$Гидрофильные вещества в отличие от липофильных хуже всасываются из ЖКТ и не проникают через гисто-гематические барьеры.

Отметьте правильные утверждения:

Метаболиты и конъюгаты лекарственных веществ всегда менее активны и менее токсичны, чем исходные соединения.

$Метаболиты и конъюгаты липофильных веществ быстрее выводятся почками, чем исходные соединения.

$В результате биотрансформации лекарственных веществ может происходить образование активных соединений.

Отметьте правильные утверждения:

В результате биотрансформации всегда образуются менее активные вещества.

$В результате биотрансформации фармакологическая активность некоторых лекарственных веществ повышается.

$Пролекарство - это фармакологически неактивное вещество, которое в результате биотрансформации превращается в активное соединение.

Отметьте правильные утверждения:

$Депонирование лекарственного вещества в крови обусловлено, как правило, его связыванием с белками плазмы крови.

$Вещества, связанные с белками плазмы крови, не оказывают действие на органы и ткани.

Депонирование лекарственного вещества в органах и тканях уменьшает кажущийся объем распределения этого вещества.

Отметьте правильные утверждения:

Пассивная диффузия слабых электролитов (кислот и оснований) через биологические мембраны не зависит от рН среды.

$Слабокислые соединени могут всасываться из желудка.

$Слабые основания всасываются из кишечника легче, чем слабые кислоты.

$Степень ионизации слабых электролитов при определенных значениях рН зависит от их константы ионизации.

Отметьте правильные утверждения:

PHпервичной мочи не влияет на скорость выведения слабых электролитов.

Скорость выведения слабых кислот можно ускорить, уменьшая рН почечного фильтрата.

$Для ускорения выведения слабых кислот рН почечного фильтрата необходимо увеличивать.

$Для ускорения выведения слабых оснований рН почечного фильтрата необходимо снижать.

Отметьте правильные утверждения:

Понятие "элиминация" включает локализацию и виды действия лекарственных веществ.

Понятие "элиминация" включает распределение, биотрансформацию и экскрецию лекарственных веществ.

$Понятие "элиминация" включает биотрансформацию и экскрецию лекарственных веществ.

Константа скорости элиминации первого порядка показывает:

$Какая часть от имеющегося в организме количества вещества элиминируется из организма в единицу времени.

Какое количество вещества удаляется из организма в единицу времени посредством биотрансформации и экскреции.

Какое количество вещества элиминируется из организма в единицу времени.

Площадь под кривой, отражающей изменение концентрации вещества в плазме крови во времени:

Прямо пропорциональна вводимой дозе вещества.

$Прямо пропорциональна количеству вещества, достигшему системного кровотока.

$Используется при расчете биодоступности вещества.

Параметр «кажущийся объем распределения» показывает:

В каком объеме жидкости организма равномерно распределяется вещество.

$В каком объеме жидкости должно равномерно распределиться вещество, чтобы его концентрация равнялась концентрации вещества в плазме крови.

В каком объеме жидкости должно равномерно распределиться попавше в кровоток вещество, чтобы его концентрация равнялась концентрации в тканях.

* 73

Параметр «кажущийся объем распределения» лекарственного вещества:

$Дает представление об относительном распределении вещества между жидкостями организма (плазмой крови, интерстициальной и внутриклеточной жидкостями).

Позволяет судить о концентрации вещества в спинномозговой жидкости.

Коррелирует с концентрацией вещества в плазме крови.

* 74

Если кажущийся объем распределения лекарственного вещества равен 3 литрам, то данное вещество:

$Не выходит за пределы кровеносного русла.

Находится в плазме и межклеточной жидкости.

Равномерно распределяется в организме.

Депонировано в тканях.

* 75

Если кажущийся объем распределения лекарственного вещества равен 40 литрам, то данное вещество:

$Липофильное соединение.

Гидрофильное соединение.

$Хорошо проникает через клеточные мемраны.

Распределяется только в крови и интерстициальной жидкости.

$Относительно равномерно распределяется в организме.

* 76

Если кажущийся объем распределения лекарственного вещества - 15 литров, то данное вещество:

$Гидрофильное соединение.

Депонировано в тканях.

$Распределяется только в крови и интерстициальной жидкости.

* 77

Если кажущийся объем распределения лекарственного вещества равен 1000 литров, то данное вещество:

Не выходит за пределы кровеносного русла.

Распределяется только в экстрацеллюлярной жидкости.

Относительно равномерно распределяется в организме.

$Депонировано в тканях.

* 78

При отравлении веществом, объем распределения которого 2500 литров, проведение гемодиализа:

Неэффективно.

$Эффективно.

*7 9

Интенсивное связывание лекарственного вещества с белками плазмы крови:

$Может уменьшить объем распределения лекарственного вещества.

Может увеличить объем распределения лекарственного вещества.

Уменьшает биодоступность лекарственного вещества.

* 80

Интенсивное связывание лекарственного вещества с тканями:

Уменьшает объем распределения лекарственного вещества.

$Увеличивает объем распределения лекарственного вещества.

Увеличивает биодоступность лекарственного вещества.

$Замедляет элиминацию лекарственного вещества.

$Может вызвать эффект последействия

* 81

Элиминация, соответствующая кинетике 1-го порядка характеризуется:

$Элиминацией определенной фракции вещества в единицу времени.

Элиминацией постоянного количества вещества в единицу времени.

$Зависимостью скорости элиминации от концентрации лекарственного вещества в крови.

* 82

Системный клиренс характеризует:

Степень всасывания лекарственного вещества.

Скорость всасывания лекарственного вещества.

$Скорость освобождения организма от лекарственного вещества.

Характер распределения лекарственного вещества.

* 83

На системный клиренс лекарственного вещества влияют:

Величина вводимой дозы.

Биодоступность.

$Скорость биотрансформации.

$Скорость экскреции.

* 84

Скорость освобождения организма от лекарственного вещества путем биотрансформации определяется как:

$Метаболический клиренс.

Константа элиминации.

Экскреторный клиренс.

Печеночный клиренс.

Почечный клиренс.

Общая фармакология

А. Фармакокинетика

Фармакокинетика - всасывание, распределение, депонирование, превращения и выведение лекарственных веществ.

Все эти процессы связаны с проникновением лекарственных веществ через клеточную (цитоплазматическую) мембрану. Основ­ные способы проникновения веществ через клеточную мембрану: пассивная диффузия, фильтрация, активный транспорт, облегчен­ная диффузия, пиноцитоз.

Пассивная диффузия - проникновение веществ через мембрану в любом ее месте по градиенту концентрации (если с одной стороны мембраны концентрация вещества выше, чем с дру­гой стороны, вещество проникает через мембрану в сторону мень­шей концентрации). Так как мембраны состоят в основном из ли-пидов, путем пассивной диффузии через клеточную мембрану легко проникают липофильные неполярные вещества, т.е. вещества, ко­торые хорошо растворимы в липидах и не несут электрических за­рядов. Наоборот, гидрофильные полярные вещества (вещества, хо­рошо растворимые в воде и имеющие электрические заряды) путем пассивной диффузии через мембрану практически не проникают.

Многие лекарственные вещества являются слабыми электролита­ми - слабокислыми соединениями или слабыми основаниями. В ра­створе часть таких веществ находится в неионизированной (неполяр­ной) форме, а часть - в виде ионов, несущих электрические заряды. Ионизация кислых соединений происходит путем их диссоциа­ции.

Ионизация оснований происходит путем их протонирования.

Путем пассивной диффузии через мембраны проникает неиони-зированная (неполярная) часть слабого электролита. Таким обра­зом, пассивная диффузия слабых электролитов обратно пропорци­ональна степени их ионизации.

В кислой среде увеличивается ионизация оснований, а в щелоч­ной среде - ионизация кислых соединений. Однако при этом сле­дует учитывать показатель рК а - отрицательный логарифм константы ионизации. Численно рК а равен рН, при котором ионизирована половина молекул соединения.

Значения рК а для разных кислот и разных оснований могут су­щественно различаться. Можно предположить, например, что аце­тилсалициловая кислота (аспирин) при рН 4,5 будет мало диссоци­ировать. Однако для ацетилсалициловой кислоты рК а = 3,5, и результат получается неожиданным.

Для определения степени ионизации используют формулу Henderson-Hasselbalch:

Следовательно, при рН 4,5 ацетилсалициловая кислота почти полностью диссоциирована.

Фильтрация. В клеточной мембране имеются водные кана­лы (водные поры), через которые проходит вода и могут проходить растворенные в воде гидрофильные полярные вещества, если раз­меры их молекул не превышают диаметра каналов. Этот процесс называют фильтрацией.

Так как через водные каналы цитоплазматической мембраны нет постоянного однонаправленного движения воды, ряд авторов счи­тают, что через водные каналы гидрофильные полярные вещества

проникают путем пассивной диффузии по градиенту концентра­ции (пассивная диффузия в водной фазе).

Однако диаметр водных каналов цитоплазматической мембраны очень мал - 0,4 нм, поэтому большинство лекарственных веществ через эти каналы не проходят.

Фильтрацией называют также прохождение воды и растворен­ных в ней веществ через межклеточные промежутки. Путем фильт­рации через межклеточные промежутки проходят гидрофильные полярные вещества. Степень их фильтрации зависит от величины межклеточных промежутков.

В эндотелии сосудов мозга межклеточные промежутки отсутству­ют и фильтрация большинства лекарственных веществ невозмож­на. Эндотелий сосудов мозга образует барьер, который препятству­ет проникновению гидрофильных полярных веществ из крови в мозг, - гематоэнцефалический барьер.

В некоторых областях головного мозга имеются «дефекты» гематоэнцефалического барьера, через которые возможно прохождение гидрофильных полярных веществ. Так, в area postrema продолгова­того мозга гидрофильные полярные вещества могут проникать в триггер-зону рвотного центра.

Некоторые гидрофильные полярные вещества проникают через гематоэнцефалический барьер путем активного транспорта (напри­мер, леводопа).

Липофильные неполярные вещества легко проходят через гема­тоэнцефалический барьер путем пассивной диффузии.

В эндотелии сосудов периферических тканей (мышцы, подкож­ная клетчатка, внутренние органы) межклеточные промежутки до­статочно велики и большинство гидрофильных полярных лекар­ственных веществ легко проходят через них путем фильтрации. При внутривенном введении эти вещества быстро проникают в ткани. При подкожном, внутримышечном введении вещества проникают из тканей в кровь и распространяются по организму.

В желудочно-кишечном тракте промежутки между клетками эпи­телия слизистой оболочки невелики и фильтрация веществ ограни­чена, поэтому в желудочно-кишечном тракте гидрофильные поляр­ные соединения всасываются плохо. Так, гидрофильное полярное соединение неостигмин (прозерин) под кожу вводят в дозе 0,0005 г, а для получения сходного эффекта при приеме внутрь требуется до­за 0,015 г.

Липофильные неполярные вещества в желудочно-кишечном трак­те хорошо всасываются путем пассивной диффузии.

Активный транспорт - транспорт лекарственных веществ через мембраны с помощью специальных транспортных систем. Такими транспортными системами обычно являются фун­кционально активные белковые молекулы, встроенные в цитоплазматическую мембрану. Лекарственное вещество, имеющее аффи­нитет к транспортной системе, соединяется с местами связывания этой системы с одной стороны мембраны; затем происходит кон-формация белковой молекулы и вещество высвобождается с другой стороны мембраны.

Активный транспорт избирателен, насыщаем, требует затрат энергии, может происходить против градиента концентрации.

Облегченная диффузия- перенос вещества через мем­браны специальными транспортными системами по градиенту кон­центрации без затрат энергии.

Пиноцитоз - впячивания клеточной мембраны, окружаю­щие молекулы вещества и образующие вакуоли, которые проникают через клетку и высвобождают вещество с другой стороны клетки.

Всасывание (абсорбция)

При большинстве путей введения лекарственные вещества, преж­де чем они попадут в кровь, проходят процесс всасывания.

Различают энтеральные (через пищеварительный тракт) и па­рентеральные (помимо пищеварительного тракта) пути введения лекарственных веществ.

Энтеральные пути введения - введение веществ под язык, внутрь, ректально. При этих путях введения вещества всасываются в ос­новном путем пассивной диффузии. Поэтому хорошо всасываются липофильные неполярные вещества и плохо - гидрофильные по­лярные соединения.

При введении веществ под язык (сублингвально) всасыва­ние происходит быстро и вещества попадают в кровь, минуя пе­чень. Однако всасывающая поверхность невелика и таким путем можно вводить только высокоактивные вещества, назначаемые в малых дозах. Например, сублингвально применяют таблетки нит­роглицерина, содержащие 0,0005 г нитроглицерина; действие на­ступает через 1-2 мин.

При назначении веществ внутрь (per os) лекарственные сред­ства (таблетки, драже, микстуры и др.) проглатывают; всасывание веществ происходит в основном в тонком кишечнике.

Из тонкого кишечника вещества через систему воротной вены попадают в печень и только затем - в общий кровоток. В печени многие вещества подвергаются превращениям (биотрансформация); некоторые вещества выделяются из печени с желчью. В связи с этим в кровь может попасть лишь часть вводимого вещества; ос­тальная часть подвергается элиминации при первом прохождении (пас­саже) через печень.

Лекарственные вещества могут неполностью всасываться в ки­шечнике, подвергаться метаболизму в стенке кишечника. Поэтому часто используют более общий термин - «пресистемная элимина­ция».

Количество неизмененного вещества, попавшего в общий кро­воток, в процентном отношении к введенному количеству обозна­чают термином «биодоступность». Например, биодоступность про-пранолола 30%. Это означает, что при приеме внутрь в дозе 0,01 г (10 мг) только 0,003 г (3 мг) неизмененного пропранолола попадает в кровь.

Для определения биодоступности лекарственное вещество вводят в вену (при внутривенном введении биодоступность вещества - 100%). Через определенные интервалы времени определяют концентрации вещества в плазме крови и строят кривую изменения концентрации вещества во времени. Затем ту же дозу вещества назначают внутрь, определяют концентрации вещества в крови и строят кривую кон­центрация-время (рис. 1).

Измеряют площади под кривыми - AUC (Area Under the Curve). Биодоступность - F (Fraction) определяют как отношение AUC при назначении внутрь к AUC при внутривенном введении и обознача­ют в процентах

При одинаковой биодоступности двух веществ скорость их по­ступления в общий кровоток может быть различной. Соответствен­но различными будут время достижения пиковой концентрации, максимальная концентрация в плазме крови, величина фармаколо­гического эффекта. В связи с этим вводят понятие «биоэквивален­тность». Биоэквивалентность двух веществ означает сходные био­доступность, пик действия, характер и величину фармакологического эффекта.

Некоторые лекарственные средства вводят ректально (в пря­мую кишку) в виде ректальных суппозиториев (свечей) или лекар­ственных клизм. При этом 50% вещества после всасывания попадает в кровь, минуя печень.

Рис. 1. Биодоступность лекарственного вещества

Биодоступность (F - Fraction) определяется как отношение площадей под кривыми

концентрация - время (AUC) при приеме вещества внутрь и введении внутривенно.

Парентеральные пути введения - введение веществ, минуя пище­варительный тракт. Наиболее употребительные парентеральные пути введения - в вену, под кожу, в мышцы.

При внутривенном введении лекарственное вещество сра­зу попадает в кровь; действие вещества развивается очень быстро, обычно в течение 1-2 мин. Чтобы не создавать в крови слишком высокой концентрации вещества, большинство лекарственных средств перед внутривенным введением разводят в 10-20 мл изото­нического (0,9%) раствора натрия хлорида или изотонического (5%) раствора глюкозы и вводят медленно - в течение нескольких ми­нут. Нередко лекарственные вещества в 250-500 мл изотоническо­го раствора водят в вену капельно, иногда в течение многих часов.

В вену нельзя вводить масляные растворы и взвеси (суспензии) в связи с опасностью закупорки сосудов (эмболии). Однако внутри­венно иногда вводят небольшие количества гипертонических растворов (например, 10-20 мл 40% раствора глюкозы), которые быстро разводятся кровью.

При внутримышечном введении (чаще всего в мышцы яго­дицы) вещества могут всасываться путем пассивной диффузии и пу­тем фильтрации (через межклеточные промежутки в эндотелии кро­веносных сосудов). Таким образом, внутримышечно можно вводить и липофильные неполярные, и гидрофильные полярные соединения.

В мышцы нельзя вводить гипертонические растворы и раздра­жающие вещества. В то же время, в мышцы вводят масляные ра­створы и взвеси (суспензии). При введении взвеси в мышце созда­ется депо препарата, из которого лекарственное вещество может медленно и длительно всасываться в кровь.

При подкожном введении (в подкожную жировую клетчат­ку) вещества всасываются так же, как и при внутримышечном вве­дении, но более медленно, так как кровоснабжение подкожной клет­чатки меньше, чем кровоснабжение скелетных мышц. Под кожу иногда вводят масляные растворы и взвеси. Однако по сравнению с введением в мышцы масляные растворы и взвеси медленнее вса­сываются и могут образовывать инфильтраты.

Из других путей введения лекарственных средств в клинической практике используют ингаляционное введение (вдыхание газообраз­ных веществ, паров летучих жидкостей, аэрозолей), введение веществ под оболочки мозга, внутриартериальное введение и некоторые другие.

Распределение

При попадании в общий кровоток липофильные неполярные вещества распределяются в организме относительно равномерно, а гидрофильные полярные вещества - неравномерно, Препятствия­ми для распределения гидрофильных полярных веществ являются, в частности, гисто-гемагпические барьеры, т.е. барьеры, отделяющие некоторые ткани от крови. К таким барьерам относятся гематоэн-цефалический, гематоофтальмический и плацентарный барьеры.

Гематоэнцефалический барьер образован слоем эндотелиальных клеток капилляров мозга, в котором отсутствуют межклеточные промежутки. Гематоэнцефалический барьер препятствует проник­новению гидрофильных полярных веществ из крови в ткани мозга. При воспалении мозговых оболочек проницаемость гематоэнцефа-лического барьера повышается.

Гематоофтальмический барьер препятствует проникновению гидрофильных полярных веществ из крови в ткани глаз.

Плацентарный барьер во время беременности препятствует про­никновению ряда веществ из организма матери в организм плода.

Для характеристики распределения лекарственного вещества ис­пользуют кажущийся объем распределения - V d (Volume of distribution).

В системе однокамерной фармакокинетической модели ,

где D - доза, С о - начальная концентрация. Поэтому кажущийся объем распределения можно определить как гипотетический объем жидкостей организма, в котором после внутривенного введения, при условии мгновенного и равномерного распределения концент­рация вещества равна его концентрации в плазме крови. V d опреде­ляют в литрах или л/кг.

Если для условного человека с массой тела 70 кг V d = 3 л (объем плазмы крови), это означает, что вещество находится в плазме кро­ви, не проникает в форменные элементы крови и не выходит за пределы кровеносного русла.

V d = 15 л означает, что вещество находится в плазме крови (3 л), в межклеточной жидкости (12 л) и не проникает в клетки тканей.

V d = 40 л (общее количество жидкости в организме) означает, что вещество распределено во внеклеточной и внутриклеточной жидкости.

V d = 400 - 600 -1000 л означает, что вещество депонировано в периферических тканях и его концентрация в крови низкая. Напри­мер, для имипрамина (трициклический антидепрессант) V d = 23 л/кг, т.е. примерно 1600 л. В связи с этим концентрация имипрамина в крови очень низкая и при отравлении имипрамином гемодиализ не эффективен.

Депонирование

При распределении лекарственного вещества в организме часть вещества может задерживаться (депонироваться) в различных тканях. Из «депо» вещество высвобождается в кровь и оказывает фармакологическое действие. Липофильные вещества могут депо­нироваться в жировой ткани. Так, средство для внутривенного наркоза тиопентал-натрий вызывает наркоз, который продолжа­ется 15-20 мин. Кратковременность действия связана с тем, что 90% тиопентала-натрия депонируется в жировой ткани. После пре­кращения наркоза наступает посленаркозный сон, который про­должается 2-3 ч и связан с действием препарата, высвобождаемо­го из жирового депо.

Антибиотики из группы тетрациклинов на длительное время депонируются в костной ткани. Тетрациклины не рекомендуют назначать детям до 8 лет, так как, депонируясь в костной ткани, они могут нарушать развитие скелета.

Многие вещества депонируются в крови, связываясь с белками плазмы крови. В соединении с белками плазмы вещества не прояв­ляют фармакологической активности. Однако часть вещества выс­вобождается из связи с белками и оказывает фармакологическое действие. Вещества, которые более прочно связываются с белками, могут вытеснять вещества с меньшей прочностью связывания. Дей­ствие вытесненного вещества при этом усиливается, так как увели­чивается концентрация в плазме крови его свободной (активной) формы. Например, сульфаниламиды, салицилаты могут таким об­разом усиливать действие назначаемых одновременно непрямых антикоагулянтов. При этом свертываемость крови может чрезмер­но снижаться, что ведет к кровотечениям.

Биотрансформация

Большинство лекарственных веществ в организме подвергается превращениям (биотрансформации). Различают метаболическую трансформацию (окисление, восстановление, гидролиз) и конъюга­цию (ацетилирование, метилирование, образование соединений с глюкуроновой кислотой и др.). Соответственно, продукты превра­щений называют метаболитами и конъюгатами. Обычно вещество подвергается сначала метаболической трансформации, а затем конъ­югации. Метаболиты, как правило, менее активны, чем исходные соединения, но иногда оказываются активнее (токсичнее) исход­ных веществ. Конъюгаты обычно малоактивны.

Большинство лекарственных веществ подвергается биотрансфор­мации в печени под влиянием ферментов, локализованных в эндоплазматическом ретикулуме клеток печени и называемых микросомальными ферментами (в основном изоферменты цитохрома Р-450).

Эти ферменты действуют на липофильные неполярные веще­ства, превращая их в гидрофильные полярные соединения, кото­рые легче выводятся из организма. Активность микросомальных ферментов зависит от пола, возраста, заболеваний печени, действия некоторых лекарственных средств.

Так, у мужчин активность микросомальных ферментов несколь­ко выше, чем у женщин (синтез этих ферментов стимулируется мужскими половыми гормонами). Поэтому мужчины более устой­чивы к действию многих фармакологических веществ.

У новорожденных система микросомальных ферментов несовер­шенна, поэтому ряд лекарственных веществ (например, хлорамфеникол) в первые недели жизни назначать не рекомендуют в связи с их выраженным токсическим действием.

Активность микросомальных ферментов печени снижается в пожилом возрасте, поэтому многие лекарственные препараты ли­цам старше 60 лет назначают в меньших дозах по сравнению с ли­цами среднего возраста.

При заболеваниях печени активность микросомальных фермен­тов может снижаться, замедляется биотрансформация лекарствен­ных средств, усиливается и удлиняется их действие.

Известны лекарственные вещества, индуцирующие синтез мик­росомальных ферментов печени, например, фенобарбитал, гризеофульвин, рифампицин. Индукция синтеза микросомальных фермен­тов при применении указанных лекарственных веществ развивается постепенно (примерно в течение 2 нед). При одновременном назна­чении с ними других препаратов (например, глюкокортикоидов, противозачаточных средств для приема внутрь) действие последних может ослабляться.

Некоторые лекарственные вещества (циметидин, хлорамфени-кол и др.) снижают активность микросомальных ферментов печени и поэтому могут усиливать действие других препаратов.

Подробности

Общая фармакология. Фармакокинетика

Фармакокинетика – раздел фармакологии, посвященный изучению кинетических закономерностей распределения лекарственных веществ. Изучает высвобождение лекартсвенных веществ, всасывание, распределение, депонирование, превращения и выделение лекарственных веществ.

Пути введения лекарственных средств

От пути введения зависят скорость развития эффекта, его выраженность и продолжительность. В отдельных случаях путь введения определяет характер действия веществ.

Различают:

1) энтеральные пути введения (через пищеварительный тракт)

При этих путях введения вещества хорошо всасываются, в основном, путем пассивной диффузии через мембрану. Поэтому ххорошо всасываются липофильные неполярные соединения и плохо – гидрофильные полярные.

Под язык (сублингвально)

Всасывание происходит очень быстро, вещества попадают в кровь, минуя печень. Однако, всассывающая поверхность невелика, и таким путем можно вводить только высокоактивные вещества, назначаемые в малах дозах.

Пример: таблетки нитроглицерина, содержащие 0,0005 г нитроглицерина. Действие наступает через 1-2 мин.

Через рот (per os)

Лекарственные вещества просто проглатывают. Всасывание происходит частично из желудка, но по большей части – из тонкого кишечника (этому способствуют значительная всасывающая поверхность кишечника и ее интенсивное кровоснабжение). Основных механизмом всасывания в кишечнике является пассивная диффузия. Всасывание из тонкой кишки происходит относительно медленно. Оно зависит от моторики кишечника, рН среды, количества и качества содержимого кишечника.

Из тонкого кишечника вещество через систему воротной вены печени попадает в печень и только затем – в общий кровоток.

Абсорбция веществ регулируется также специальным мембранным транспортером – Р-гликопротеином. Он способствует выведению веществ в просвет кишечника и препятствует их абсорбции. Известны ингибиторы этого вещества – циклоспорин А, хинидин, верапамил, итракназол и т.д.

Следует помнить, что некоторые лекарственные вещества нецелесообразно назначать внутрь, так как они разрушаются в ЖКТ под действием желудочного сока и ферментов. В таком случае (или же если препарат оказывает раздражающее действие на слизистую желудка), его назначают в капсулах или драже, которые растворяются только в тонком кишечнике.

Ректально (per rectum)

Значительная часть вещества (около 50%)поступает в кровоток, минуя печень. Кроме того, при этом пути введения вещество не подвергается воздействию ферментов ЖКТ. Всасывание происходит путем простой диффузии. Ректально вещества назначают в виде суппозиториев или клизм.

Лекарственные вещества, имеющие структуру белков, жиров и полисахаридов, в толстой кишке не всасываются.

Также применяют подобный путь введения и для местного воздействия.

2) парентеральные пути введения

Введение веществ, минуя пищеварительный тракт.

Подкожный

Вещества могут всасываться путем пассивной диффузии и фильтрации через межклеточные промежутки. Таким орбазом, под кожу можно вводить и липофильные неполярные, и гидрофильные полярные вещества.

Обычно подкожно вводят растворы лекарственных веществ. Иногда – масляные растворы или взвеси.

Внутримышечное

Вещества всасываются так же, как и при подкожном введении, но более быстро, так как васкуляризация скелетных мышц более выражена по сравнению с подкожно-жировой клетчаткой.

В мышцы нельзя вводить гипертонические растворы, раздражающие вещества.

В то же время, в мышцы вводят масляные растворы, взвеси, для того, чтобы создать депо препарата, при котором лекарственное вещество может длительно всасываться в кровь.

Внутривенно

Лекарственное вещество сразу попадает в кровь, поэтому его действие развивается очень быстро – за 1-2 минуты. Чтобы не создавать слишком высокой концентрации вещества в крови, его обычно разводят в 10-20 мл изотонического раствора натрия хлорида и вводят медленно, в течение нескольких минут.

В вену нельзя вводить масляные растворы, взвеси в связи опасностью закупорки сосудов!

Внутриартериально

Позволяет создать в области, которая кровоснабжается данной артерией, высокую концентрацию вещества. Таким путем иногда вводят противоопухолевые препараты. Для уменьшения общетоксического действия может быть искусственно затруднен отток крови путем наложения жгута.

Интрастернальный

Обычно используют при технической невозможности внутривенного введения. Лекарство вводят в губчатое вещество грудины. Метод используется для детей и людей пожилого возраста.

Внутрибрюшинный

Редко используется, как правило, на операциях. Действие наступает очень быстро, так как большинство лекарств хорошо всасывается через листки брюшины.

Ингаляционно

Введение лекарственных препаратов путем вдыхания. Так вводят газообразные вещества, пары летучих жидкостей, аэрозоли.

Легкие хорошо кровоснабжаются, поэтому всасывание происходит очень быстро.

Трансдермально

При необходимости длительного действия высоколипофильных лекарственных веществ, которые легко проникают через неповрежденную кожу.

Интраназально

Для введения в полость носа в виде капель или спрея в расчете на местное или резорбтивное действие.

Проникновение лекарственных веществ через мембрану. Липофильные неполярные вещества. Гидрофильные полярные вещества.

Основные способы проникновения – пассивная диффузия, активный транспорт, облегченная диффузия, пиноцитоз.

Плазматическая мембрана состоит, в основном, из липидов, а это значит, что проникать путем пассивной диффузии через мембрану могут только липофильные неполярные вещества. Наоборот, гидрофильные полярные вещества (ГПВ) таким путем через мембрану практически не проникают.

Многие лекарственные вещества являются слабыми электролитами. В растворе часть таких веществ находится в неионизированной форме, т.е. в неполярной, а часть – в виде ионов, несущих электрические заряды.

Путем пассивной диффузии через мембрану проникает неионизированная часть слабого электролита

Для оценки ионизации используют величину pK a – отрицательный логарифм константы ионизации. Численно pK a равен pH, при котором ионизирована половина молекул соединения.

Для определения степени ионизации используют формулу Хендерсона-Хассельбаха:

pH = pKa+-для оснований

Ионизация оснований происходит путем их протонирования

Степень ионизации определяется так

pH = pK а +-для кислот

Ионизация кислот происходит путем их протонирования.

НА = Н + + А -

Для ацетилсалициловой кислоты рКа = 3.5. При рН = 4.5:

Следовательно, при рН = 4.5 ацетилсалициловая кислота будет почти полностью диссоциирована.

Механизмы всасывания веществ

Лекарственные вещества могут проникать в клетку путем:

Пассивной диффузии

В мембране есть аквапорины, через которые поступает вода в клетку и могут проходить путем пассивной диффузии по градиенту концентрации растворенные в воде гидрофильные полярные вещества с очень малыми размерами молекул (эти аквапорины очень узкие). Однако, такой тип поступления лекарственных веществ в клетке очень редок, так как размер большинства молекул лекарственных веществ превышает размер диаметр аквапоринов.

Также путем простой диффузии проникают липофильные неполярные вещества.

Активного транспорта

Транспорт лекарственного гидрофильного полярного вещества через мембрану против градиента концентрации с помощью специального переносчика. Такой транспорт избирателен, насыщаем и требует затрат энергии.

Лекарственное вещество, имеющее аффинитет к транспортному белку, соединяется с местами связывания этого переносчика с одной стороны мембраны, затем происходит конформационное изменение переносчика, и, наконец, вещество высвобождается с другой стороны мембраны.

Облегченной диффузии

Транспорт гидрофильного полярного вещества через мембрану специальной транспортной системой по градиенту концентрации, без затрат энергии.

Пиноцитоза

Впячивания клеточной мембраны, окружающие молекулы вещества и образующие везикулы, которые проходят через цитоплазму клетки и высвобождают вещество с другой стороны клетки.

Фильтрации

Через поры мембран.

Также имеет значение фильтрация лекарственных веществ через межклеточные промежутки.

Фильтрация ГПВ через межклеточные промежутки имеет важное значение при всасывании, распределении и выведении и зависит от:

а) величины межклеточных промежутков

б) величины молекул веществ

1) через промежутки между клетками эндотелия в капиллярах почечных клубочков путем фильтрации легко проходят большинство лекарственных веществ, находящихся в плазме крови, если они не связаны с белками плазмы.

2) в капиллярах и венулах подкожно-жировой клетчатки, скелетных мышц промежутки между клетками эндотелия достаточны для прохождения большинства лекарственных веществ. Поэтому при введении под кожу или в мышцы хорошо всасываются и проникают в кровь и липофильные неполярные вещества (путем пассивной диффузии в липидной фазе), и гидрофильные полярные (путем фильтрации и пассивной диффузии в водной фазе через промежутки между клетками эндотелия).

3) при введении ГПВ в кровь вещества быстро проникают в большинство тканей через промежутки между эндотелиоцитами капилляров. Исключения вещества, для которых существуют системы активного транспорта (противопаркинсонический препарат левадопа) и ткани, отделенные от крови гистогематическими барьерами. Гидрофильные полярные вещества могут проникнуть через такие барьеры только в некоторых местах, в которых барьер мало выражен (в area postrema продолговатого мозга проникают ГПВ в триггер-зону рвотного центра).

Липофильные неполярные вещества легко проникают в центральную нервную системы через гемато-энцефалический барьер путем пассивной диффузии.

4) В эпителии ЖКТ межклеточные промежутки малы, поэтому ГПВ достаточно плохо всасываются в нем. Так, гидрофильное полярное вещество неостигмин под кожу назначают в дозе 0,0005 г, а для получения сходноого эффекта при назначении внутрь требуется доза 0,015 г.

Липофильные неполярные вещества легко всасываются в ЖКТ путем пассивной диффузии.

Биодоступность. Пресистемная элиминация.

В связи с тем, что системное действие вещества развиваеся только при попадании его в кровоток, откуда оно поступает в ткани, предложен термин «биодоступность».

В печени многие вещества подвергаются биотрансформации. Частично вещество может выделяться в кишечник с желчью. Именно поэтому в кровь может попасть лишь часть вводимого вещества, остальная часть подвергается элиминации при первом прохождении через печень.

Элиминация – биотрансформация + экскреция

Кроме того, лекарства могут не полностью всасываться в кишечнике, подвергаться метаболизму в стенке кишечника, частично выводиться из него. Все это, вместе с элиминацией при первом прохождении через печень называют пресистемной элиминацией .

Биодоступность – количество неизмененного вещества, попавшего в общий кровоток, в процентном отношении к введенному количеству.

Как правило, в справочниках указано значения биодоступности при их назначении внутрь. Например, биодоступность пропранолола – 30%. Это означает, что при введении внутрь в дозе 0.01 (10 мг) только 0,003 (3 мг) неизмененного пропранолола попадает в кровь.

Для определения биодоступности лекарство вводят в вену (при в/в способе введения биодоступность вещества составляет 100%). Через определенные интервалы времени определяются концентрации вещества в плазме крови, затем строят кривую изменения концентрации вещества во времени. Затем ту же дозу вещества назначают внутрь, определяют концентрацию вещества в крови и также строят кривую. Измеряют площади под кривыми – AUC. Биодоступность – F – определяют как отношение AUC при назначении внутрь к AUC при внутревенном введении и обозначают в процентах.

Биоэквивалентность

При одинаковой биодоступности двух веществ скорость их поступления в общий кровоток может быть различной! Соответственно различными будут:

Время достижения пиковой концентрации

Максимальная концентрация в плазме крови

Величина фармакологического эффекта

Именно поэтому вводят понятие биоэквивалентность.

Биоэквивалентность – означает сходные биодоступность, пик действия, характер и величину фармакологического эффекта.

Распределение лекарственных веществ.

При попадании в кровоток липофильные вещества, как правило, распределяются в организме относительно равномерно, а гидрофильные полярные – неравномерно.

Существенное влияние на характер распределения веществ оказывают биологические барьеры, которые встречаются у них на пути: стенки капилляров, клеточные и плазматические мембраны, гемато-энцефалический и плацентарный барьеры (уместно посмотреть раздел «Фильтрафия через межклеточные промежутки»).

Эндотелий капилляров мозга не имеет пор, там практически отсутствует пиноцитоз. Также роль играют астроглии, которые увеличивают барьерную силу.

Гематоофтальмический барьер

Препятствует проникновению гидрофильных полярных веществ из крови в ткань глаза.

Плацентарный

Препятствует проникновению гидрофильных полярных веществ из организма матери в организм плода.

Для характеристики распределения лекарственного вещества в системе однокамерной фармакокинетической модели (организм условно представляется как единое пространство, заполненное жидкостью. При введении лекарственное вещество мгновенно и равномерно распределяется) используют такой показатель как кажущийся объем распределения - V d

Кажущийся объем распределения отражает предположительный объем жидкости, в котором распределяется вещество.

Если для лекарственного вещества V d = 3 л (объем плазмы крови), то это означает, что вещество находится в плазме крови, не проникает в форменные элементы крови и невыходит за пределы кровеносного русла. Возможно, это высокомолекулярное вещество (V d для гепарина = 4 л).

V d = 15 л означает, что вещество находится в плазме крови (3 л), в межклеточной жидкости (12 л) и не проникает в клетки тканей. Вероятно, это гидрофильное полярное вещество.

V d = 400 – 600 – 1000л означает, что ещество депонировано в периферических тканях и его концентрация в крови низкая. Например, для имипрамина – трициклический антидепрессант - V d = 23л/кг, то есть примерно 1600 л. Это означает, что концентрация имипрамина в крови очень низкая и при отравлении имипрамином гемодиализ неэффективен.

Депонирование

При распределении лекарственного вещества в организме часть может задерживаться (депонироваться) в различных тканях. Из депо вещество высвобождается в кровь и оказывает фармакологическое действие.

1) Липофильные вещества могут депонироваться в жировой ткани. Средство для наркоза тиопентал-натрий вызывает наркоз продолжительнотью 15-20 минут, так как 90% тиопентала-натрия депонируется в жировой ткани. После прекращения наркоза наступает посленаркозный сон 2-3 часа в связи с высвобождением тиопентала-натрия.

2) Тетрациклины на длительное время депонируются в костной ткани. Поэтому не назначают детям до 8 лет, так как может нарушить развитие костей.

3) Депонирование, связанное с плазмой крови. В соединении с белками плазмы вещества не проявляют фармакологической активности.

Биотрансформация

В неизменном виде выделются лишь высокогидрофильные ионизированные соединения, средства для ингаляционного наркоза.

Биотрансформация большинства веществ происходит в печени, где обычно создаются высокие концентрации веществ. Кроме того, может происходить биотрансформация в легких, почках, стенке кишечника, коже и т.д.

Различают два основных вида биотрансформации:

1) метаболическая трансформация

Превращение веществ за счет окисления, восстановления и гидролиза. Окисление происходит, в основном, за счет микросомальных оксидаз смешанного действия при участии НАДФ, кислорода и цитохрома Р-450. Восстановление происходит под влиянием системы нитро- и азоредуктаз и т.п. Гидролизируют, обычно, эстерзы, карбоксилэстеразы, амидазы, фосфатазы и т.д.

Метаболиты, как правило, менее активны, чем исходные вещества, но иногда активнее них. Например: эналаприл метаболизируется в энаприлат, который оказывает выраженное гипотензивное действие. Однако, он плохо всасывается в ЖКТ, потому стараются вводить в/в.

Метаболиты могут быть токсичнее исходных веществ. Метаболит парацетамола – N-ацетил-пара-бензохинонимин при передозировке вызывает некроз печени.

2) конъюгация

Биосинтетический процесс, сопровождающийся присоединением к лекарственному веществу или его метаболитам ряда химических группировок или молекул эндогенных соединений.

Процессы идут либо один за другим, либо протекают отдельно!

Различают также :

-специфическую биотрансформацию

Отдельный фермент воздействует на одно или несколько соединений, проявляя при этом высокую субстратную активность. Пример: метиловый спирт окисляется алкогольдегидрогеназой с образованием формальдегидом и муравьиной кислоты. Этиловый спирт также окисляется аклогольдегидрогеназой, но аффинитет этанола к ферменту значительно выше, чем у метанола. Поэтому этанол может замедлять биотрансформацию метанола и уменьшать его токсичность.

-неспецифическую биотрансформацию

Под влиянием микросомальных ферментов печени (в основном, оксидазы смешанных функций), локализованных в гладкоповерхностных участках эндоплазматического ретикулума клеток печени.

В результате биотрансформации липофильные незаряженные вещества обычно превращаются в гидрофильные заряженные, поэтому легко выводятся из организма.

Выведение (экскреция)

Лекарственные вещества, метаболиты и конъюгаты, в основном выводятся с мочой и желчью.

-с мочой

В почках низкомолекулярные соединения, растворенные в плазме (не связанные с белками), фильтруются через мембраны капилляров клубочков и капсул.

Также активную роль играет активная секреция веществ в проксимальном канальце с участием транспортных систем. Этим путем выделяются органические кислоты, салицилаты, пенициллины.

Вещества могут замедлять выведение друг друга.

Липофильные незаряженные вещества подвергаются реабсорбции путем пассивной диффузии. Гидрофильные полярные не реабсорбируются и выводятся с мочой.

Большое значение имеет рН. Для ускоренного выведения кислых соединений реакцию мочи стоит изменять в щелочную сторону, а для выведения оснований – в кислую.

- с желчью

Так выводятся тетрациклины, пенициллины, колхицин и др. Эти препараты значительно выделяются с желчью, затем частично выводятся с экскрементами, либо реабсорбируются (кишечно -печеночная рециркуляция ).

- с секретами разных желез

Особое внимание стоит обратить на то, что в период лактации молочными железами выделяются многие вещества, которые получает кормящая мать.

Элиминация

Биотрансформация + экскреция

Для количественной характеристики процесса используется ряд параметров: константа скорости элиминации (К elim), период полуэлиминации (t 1/2), общий клиренс (Cl T).

Константа скорости элиминации - К elim – отражает скорость удаления вещества из организма.

Период полуэлиминации - t 1/2 – отражает время, необходимое для снижения концентрации вещества в плазме на 50%

Пример: в вену введено вещество А в дозе 10 мг. Константа скорости элиминации = 0,1 / ч. Через час в плазме останется 9 мг, через два часа – 8,1 мг.

Клиренс - Cl T – количество плазмы крови, очищаемое от вещества в единицу времени.

Различают почечный, печеночный и общий клиренс.

При постоянной концентрайии вещества в плазме крови почечный клиренс – Cl r определяется так:

Cl = (V u х C u)/ C p [мл/мин]

Где C u и C p - концентрация вещества в моче и плазме крови, соответственно.

V u - скорость мочеотделения.

Общий клиренс Cl T определяется по формуле: Cl T = V d х K el

Общий клиренс показывает, какая часть объема распределения освобождается от вещества в единицу времени.


Фармакокинетические процессы - всасывание, распределение, депонирование, биотрансформация и выведение - связаны с проникновением ЛВ через биологические мембраны (в основном через цитоплазматические мембраны клеток). Существуют следующие способы проникновения веществ через биологические мембраны: пассивная диффузия, фильтрация, активный транспорт, облегченная диффузия, пиноцитоз (рис. 1.1).
Пассивная диффузия. Путем пассивной диффузии вещества проникают через мембрану по градиенту концентрации (если концентрация вещества с одной стороны мембраны выше, чем с другой, вещество перемещается через мембрану от большей концентрации к меньшей). Этот процесс не требует затраты энергии. Поскольку биологические мембраны в основном состоят из липидов, таким способом через них легко проникают вещества, растворимые в липидах и не имеющие заряда, т.е. липофильные неполярные вещества. И напротив, гидрофильные полярные соединения непосредственно через липиды мембран практически не проникают.

Внеклеточное через липиды пространство
Активный
транспорт
Биологическая
мембрана
Рис. 1.1. Основные способы проникновения веществ через биологические мембраны (Из: Rang Н.Р. etal. Pharmacology. - Ln, 2003, с изм.).

Если Л В являются слабыми электролитами - слабыми кислотами или слабыми основаниями, то проникновение таких веществ через мембраны зависит от степени их ионизации, так как путем пассивной диффузии через двойной липидный слой мембраны легко проходят только неионизированные (незаряженные) молекулы вещества.
Степень ионизации слабых кислот и слабых оснований определяется: значениями pH среды; константой ионизации (Ка) веществ.
Слабые кислоты в большей степени ионизированы в щелочной среде, а слабые основания - в кислой.
Ионизация слабых кислот
НА ^ Н+ + А~
щелочная среда
Ионизация слабых оснований
ВН+ ^ В + Н+
кислая
среда
Константа ионизации характеризует способность вещества к ионизации при определенном значении pH среды. На практике для характеристики способности веществ к ионизации используют показатель рКа, который является отрицательным логарифмом Ka(-lg Ка). Показатель рКа численно равен значению pH среды, при котором ионизирована половина молекул данного вещества. Значения рКа слабых кислот, так же как и слабых оснований, варьируют в широких пределах. Чем меньше рКа слабой кислоты, тем легче она ионизируется даже при относительно низких значениях pH среды. Так, ацетилсалициловая кислота (рКа= 3,5) при pH 4,5 ионизирована более чем на 90%, в то же время степень ионизации аскорбиновой кислоты (рКа=11,5) при том же значении pH составляет доли % (рис. 1.2). Для слабых оснований существует обратная зависимость. Чем выше рКа слабого основания, тем в большей степени оно ионизировано даже при относительно высоких значениях pH среды.
Степень ионизации слабой кислоты или слабого основания можно рассчитать по формуле Гендерсона-Гассельбальха:

Рис. 1.2. Зависимость степени ионизации слабых кислот от pH среды и рКа соединений.
А - ацетилсалициловая кислота (рКа = 3,5); Б - аскорбиновая кислота (рКа = 11,5).

lg-^-U рН-рК [ЯД] “
для слабых кислот, %-Щ- = рН-рКа [ВН + ]
для слабых оснований.
Эта формула позволяет определить, какова будет степень проникновения ЛВ (слабых кислот или слабых оснований) через мембраны, разделяющие среды организма с различными значениями pH, например при всасывании Л В из желудка (pH 2) в плазму крови (pH 7,4).
Пассивная диффузия гидрофильных полярных веществ возможна через водные поры (см. рис. 1.1). Это белковые молекулы в мембране клеток, проницаемые для воды и растворенных в ней веществ. Однако диаметр водных пор невелик (порядка 0,4 нм) и через них могут проникать только небольшие гидрофильные молекулы (например, мочевина). Большинство гидрофильных лекарственных веществ, диаметр молекул которых составляет более 1 нм, через водные поры в мембране клеток не проходят. Поэтому большинство гидрофильных лекарственных веществ не проникают внутрь клеток.
Фильтрация - этот термин используют как по отношению к проникновению гидрофильных веществ через водные поры в мембране клеток, так и по отношению к их проникновению через межклеточные промежутки. Фильтрация гидрофильных веществ через межклеточные промежутки происходит под гидростатическим или осмотическим давлением. Этот процесс имеет существенное значение для всасывания, распределения и выведения гидрофильных Л В и зависит от величины межклеточных промежутков.
Так как межклеточные промежутки в различных тканях не одинаковы по величине, гидрофильные ЛВ при различных путях введения всасываются в неодинаковой степени и распределяются в организме неравномерно. Например, про
межутки между эпителиальными клетками слизистой оболочки кишечника невелики, что затрудняет всасывание гидрофильных Л В из кишечника в кровь.
Промежутки между эндотелиальными клетками сосудов периферических тканей (скелетных мышц, подкожной клетчатки, внутренних органов) имеют достаточно большие размеры (порядка 2 нм) и пропускают большинство гидрофильных Л В, что обеспечивает достаточно быстрое проникновение Л В из тканей в кровь и из крови в ткани. В то же время в эндотелии сосудов мозга межклеточные промежутки отсутствуют. Эндотелиальные клетки плотно прилегают к друг другу, образуя барьер (гематоэнцефалический барьер), препятствующий проникновению гидрофильных полярных веществ из крови в мозг (рис. 1.3).
Активный транспорт осуществляется с помощью специальных транспортных систем. Обычно это белковые молекулы, которые пронизывают мембрану клетки (см. рис. 1.1). Вещество связывается с белком-переносчиком с наружной стороны мембраны. Под влиянием энергии АТФ происходит изменение конформации белковой молекулы, что приводит к уменьшению силы связывания между переносчиком и транспортируемым веществом и высвобождению вещества с внутренней стороны мембраны. Таким образом в клетку могут проникать некоторые гидрофильные полярные вещества.
Фильтрация гидрофильных веществ через межклеточные промежутки

Пассивная
диффузия
липофильных
веществ
Рис. 1.3. Проникновение веществ через стенки капилляров мозга (А) и капилляров скелетных мышц (Б). (Из: Wingard L.B. Human Pharmacology. - Phil., 1991, с изм.).
Активный транспорт веществ через мембрану обладает следующими характеристиками: специфичностью (транспортные белки избирательно связывают и пе-

реносят через мембрану только определенные вещества), насыщаемостью (при связывании всех белков-переносчиков количество вещества, переносимого через мембрану, не увеличивается), происходит против градиента концентрации, требует затраты энергии (поэтому угнетается метаболическими ядами).
Активный транспорт участвует в переносе через клеточные мембраны таких веществ, необходимых для жизнедеятельности клеток, как аминокислоты, сахара, пиримидиновые и пуриновые основания, железо, витамины. Некоторые гидрофильные лекарственные вещества проникают через клеточные мембраны с помощью активного транспорта. Эти Л В связываются с теми же транспортными системами, которые осуществляют перенос через мембраны вышеперечисленных соединений.
Облегченная диффузия - перенос веществ через мембраны с помощью транспортных систем, который осуществляется по градиенту концентрации и не требует затраты энергии. Так же, как активный транспорт, облегченная диффузия - это специфичный по отношению к определенным веществам и насыщаемый процесс. Этот транспорт облегчает поступление в клетку гидрофильных полярных веществ. Таким образом через мембрану клеток может транспортироваться глюкоза.
Кроме белков-переносчиков, которые осуществляют трансмембранный перенос веществ внутрь клетки, в мембранах многих клеток есть транспортные белки - Р-гликопротеины, способствующие удалению из клеток чужеродных соединений. Р-гликопротеиновый насос обнаружен в эпителиальных клетках кишечника, в эндотелиальных клетках сосудов мозга, образующих гематоэнцефалический барьер, в плаценте, печени, почках и других тканях. Эти транспортные белки препятствуют всасыванию некоторых веществ, их проникновению через гистогема- тические барьеры, влияют на выведение веществ из организма.
Пиноцитоз (от греч. ріпо - пью). Крупные молекулы или агрегаты молекул соприкасаются с наружной поверхностью мембраны и окружаются ею с образованием пузырька (вакуоли), который отделяется от мембраны и погружается внутрь клетки. Далее содержимое пузырька может высвобождаться внутри клетки или с другой стороны клетки наружу путем экзоцитоза.

Фармакодинамика – действие лекарственных веществ на организм. Фармакокинетика – действие организма на лекарство.

  1. всасывание
  2. распределение
  3. депонирование
  4. биотрансформация
  5. выведение
Всасывание – поступление веществ от места введения в кровь. Транспорт через мембрану :
  1. пассивная диффузия (липофильные вещества)
  2. фильтрация
  3. активный транспорт
Пассивная диффузия зависит от:
  1. липофильности фазы
  2. площади поверхности
  3. диаметра пор мембраны
  4. степени ионизации слабых электролитов (проникает неионизированная форма)
Степень ионизации слабых электролитов зависит от:
  1. pH среды (повышается у кислот в щелочной среде, у оснований в кислой среде); на этом принципе функционирует ионная ловушка – незаряженная молекула попадает в среду, где ионизируется и в силу этого остается там
  2. свойств вещества (способности к ионизации)
Характеристикой способности к ионизации является константа ионизации - К ионизации. Эта константа численно равна концентрация H + при которой ионизировано ½ молекул вещества. Сходным является показатель pK a . В отличие от К ионизации , он численно равен pH (а не концентрации H + , как в случае К ионизации ) при котором ионизировано ½ молекул вещества. pK a = - lgK a (К ионизации = K a для кислот и K b для оснований). Формула Гендельсона-Гассельбаха связывает показатели pH и pK a . pH-pK a =lg/ (для кислот) pH-pK a =lg[B]/ (для оснований) Липофильные неполярные соединения проникают через мембрану после диффузии в липидной фазе (легко проникают внутрь клетки). Гидрофильные вещества проникают в клетки:
  1. фильтрацией (с водой через водные поры) или пассивной диффузией в водной фазе (только маленькие по размеру молекулы). Это означает, что гидрофильные вещества (вводимые, например, внутривенно) могут проникать через межклеточное промежутки в эндотелии почечных клубочков, капилляров.
Замечания: a) В капиллярах мозга нет промежутков, т.е. формируется ГЭБ – гематоэнцефалический барьер. Но есть одно место в мозгу, где гидрофильные вещества всё-таки могут проникать в вещество мозга – пусковая зона рвотного центра. b) Малы промежутки между эпителиоцитами ЖКТ , следовательно всасывание полярных продуктов затруднено. c) Между эпителиоцитами почечного канальца
(но не клубочка) отсутствуют межклеточные промежутки, следовательно полярные соединения не реабсорбируются.
  1. путем активного транспорта и облегченной диффузии
Свойства активного транспорта:
  • специфичность
  • насыщаемость.
Отличия облегченной диффузии и активного транспорта:
  1. Облегченная диффузия осуществляется по градиенту концентрации, без затрат энергии.
  2. Активный транспорт осуществляется против градиента концентрации, с затратами энергии.
Вещества, транспортирующиеся активно :
  1. нутриенты: сахара, нуклеиновае кислоты, аминокислоты
  2. некоторые лекарственные вещества (структурные аналоги нутриентов), например, леводопа (ДОФА), превращается организмом в дофамин, используется для лечение паркинсонизма, при всасывании транспортируется активно.
Пример:
  1. Пентамин (ганглиоблокатор) - бисчетвертичное соединение => плохо всасывается, вводится внутримышечно.
  2. Мекамиламин (?) (ганглиоблокатор) (вторичное аммониевое соединение, производное никотина) => легко всасывается.
  3. Тубокурарин (курареподобное соединение) – гидрофильное соединение, плохо всасывается, проникает в кровь при внутримышечном введении.
  4. Прозерин ("неостигмин", блокатор АХЭ) - повышает концентрацию ацетилхолина в синаптической щели => облегчает нервно-мышечную передачу (лечение миастении). Вводится 4 раза в день (под кожу – 0,5 мг, внутрь – 15 мг, такая разница между внутривенной и энтеральной дозах из-за того, что это вещество плохо всасывается в кишечнике)
  5. Действующие вещества многих растений – алкалоиды (слабые основания)
Распределение. Зависит от гидрофильных, гидрофобных свойств. Биотрансформация. Липофильные вещества метаболизируются системой микросомального окисления печени (ферменты эндоплазматического ретикулума) в гидрофильные вещества, которые легко выводятся из организма. Выведение:
  1. фильтрация
  2. секреция в проксимальных канальцах
  3. реабсорбция в дистальных канальцах (липофильные вещества)
Для лучшего выведения лекарственных средств иногда используют свойство заряженных молекул плохо диффундировать через биологические мембраны. Например, для выведение фенобарбитала (слабая кислота) защелачивают почечный фильтрат с помощью введения гидрокарбоната (при форсированном диурезе).

Клиническая фармакокинетика.

Однокамерная модель .

Кажущийся V d (объем распределения) – гипотетический объем жидкости организма, в котором после внутривенного введения вещества при условии его мгновенного и равномерного распределения. (т.е. концентрация вещества=концентрации в плазме крови). Пример:

  1. V d =3л, что примерно составляет объем плазмы крови (следовательно вещество не вышло за пределы сосудистого русла); так распределяется гепарин (V d =3,6 л)
  2. V d =15 л, что составляет суммарный объем плазмы и интерстициальной жидкости (следовательно вещество вышло за пределы сосудистого русла, но не прошло внутрь клеток)
  3. V d =40 л, что больше суммарного объема плазмы и интерстиция (следовательно вещество распределилось между плазмой, интерстицием, проникло в клетки (липофильное неполярное).
  4. V d =400 л, вещества очень мало в плазме крови.
Характер изменения концентрации вещества в плазме может быть разным:
  1. Кинетика первого порядка
определенная часть вещества. Кинетика первого порядка характеризуется константой элиминации ( K e , K el . ). Пример: ввели 10 мг вещества. Для приведенного выше примера K el . составляет 0,1 ч -1 .

  1. Кинетика нулевого порядка
– за единицу времени выводится определенное количество вещества (для этанола ~ 10г/час).

 

Возможно, будет полезно почитать: