Нейроны головного мозга – строение, классификация и проводящие пути. Строение нервной системы Что такое нервная клетка

Нервная ткань осуществляет управление всеми процессами в организме.

Нервная ткань состоит из нейронов (нервных клеток) и нейроглии (межклеточное вещество). Нервные клетки имеют различную форму. Нервная клетка снабжена древовидными отростками - дендритами, передающими раздражения от рецепторов к телу клетки, и длинным отростком - аксоном, который заканчивается на эффекторной клетке. Иногда аксон не покрыт миелиновой оболочкой.

Нервные клетки способны под действием раздражения приходить в состояние возбуждения , вырабатывать импульсы и передавать их. Эти свойства определяют специфическую функцию нервной системы. Нейроглия органически связана с нервными клетками и осуществляет трофическую, секреторную, защитную функции и функцию опоры.

Нервные клетки - нейроны, или нейроциты, представляют собой отростчатые клетки. Размеры тела нейрона колеблются в значительных пределах (от 3-4 до 130 мкм). По форме нервные клетки также очень разные. Отростки нервных клеток проводят нервный импульс из одной части тела человека в другую, длина отростков от нескольких микрон до 1,0-1,5 м.

Строение нейрона . 1 - тело клетки; 2 - ядро; 3 - дендриты; 4 - нейрит (аксон); 5 - разветвленное окончание нейрита; 6 - неврилемма; 7 - миелин; 8 - осевой цилиндр; 9 - перехваты Ранвье; 10 - мышца

Различают два вида отростков нервной клетки. Отростки первого вида проводят импульсы от тела нервной клетки к другим клеткам или тканям рабочих органов, они называются нейритами, или аксонами. Нервная клетка имеет всегда только один аксон, который заканчивается концевым аппаратом на другом нейроне или в мышце, железе. Отростки второго вида называются дендритами, они древовидно ветвятся. Их количество у разных нейронов различно. Эти отростки проводят нервные импульсы к телу нервной клетки. Дендриты чувствительных нейронов имеют на периферическом конце специальные воспринимающие аппараты - чувствительные нервные окончания, или рецепторы.

Классификация нейронов по функции:

  1. воспринимающие (чувствительные, сенсорные, рецепторные). Служат для восприятия сигналов из внешней и внутренней среды и передачи их в ЦНС;
  2. контактные (промежуточные, вставочные, интернейроны). Обеспечивают переработку, хранение и передачу информации к двигательным нейронам. Их в ЦНС большинство;
  3. двигательные (эфферентные). Формируют управляющие сигналы, и передают их к периферическим нейронам и исполнительным органам.

Виды нейронов по количеству отростков:

  1. униполярные – имеющие один отросток;
  2. псевдоуниполярные – от тела отходит один отросток, который затем делится на 2 ветви;
  3. биполярные – два отростка, один дендрит, другой аксон;
  4. мультиполярные – имеют один аксон и много дендритов.


Нейроны (нервные клетки). А - мультиполярный нейрон; Б - псевдоуниполярный нейрон; В - биполярный нейрон; 1 - аксон; 2 - дендрит

Аксоны, покрытые оболочкой называются нервными волокнами . Различают:

  1. непрерывные - покрыты непрерывной оболочкой, находятся в составе вегетативной нервной системы;
  2. мякотные - покрыты сложной, прерывной оболочкой, импульсы могут переходить с одного волокна на другие ткани. Это явление называется иррадиацией.


Нервные окончания . А - двигательное окончание на мышечном волокне: 1 - нервное волокно; 2 - мышечное волокно; Б - чувствительные окончания в эпителии: 1 - нервные окончания; 2 - клетки эпителия

Чувствительные нервные окончания (рецепторы ) образованы концевыми разветвлениями дендритов чувствительных нейронов.

  • экстерорецепторы воспринимают раздражения из внешней среды;
  • интерорецепторы воспринимают раздражения от внутренних органов;
  • проприорецепторы воспринимающие раздражения от внутреннего уха и суставных сумок.

По биологическому значению рецепторы делятся на: пищевые , половые , оборонительные .

По характеру ответной реакции рецепторы делятся на: двигательные - находятся в мышцах; секреторные - в железах; сосудодвигательные - в кровеносных сосудах.

Эффектор - исполнительное звено нервных процессов. Эффекторы бывают двух типов - двигательные и секреторные. Двигательные (моторные) нервные окончания являются концевыми разветвлениями нейритов двигательных клеток в мышечной ткани и называются нервно-мышечными окончаниями. Секреторные окончания в железах образуют нервно-железистые окончания. Названные виды нервных окончаний представляют собой нервно-тканевой синапс.

Связь между нервными клетками осуществляется при помощи синапсов. Они образованы концевыми ветвлениями нейрита одной клетки на теле, дендритах или аксонах другой. В синапсе нервный импульс проходит только в одном направлении (с нейрита на тело или дендриты другой клетки). В различных отделах нервной системы они устроены по-разному.

Эта клетка имеет сложное строение, высоко специализирована и по структуре содержит ядро, тело клетки и отростки. В организме человека насчитывается более ста миллиардов нейронов.

Обзор

Сложность и многообразие функций нервной системы определяются взаимодействием между нейронами, которое, в свою очередь, представляют собой набор различных сигналов, передаваемых в рамках взаимодействия нейронов с другими нейронами или мышцами и железами. Сигналы испускаются и распространяются с помощью ионов, генерирующих электрический заряд, который движется вдоль нейрона.

Строение

Нейрон состоит из тела диаметром от 3 до 130 мкм, содержащего ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый ЭПР с активными рибосомами, аппарат Гольджи), а также из отростков. Выделяют два вида отростков: дендриты и . Нейрон имеет развитый и сложный цитоскелет, проникающий в его отростки. Цитоскелет поддерживает форму клетки, его нити служат «рельсами» для транспорта органелл и упакованных в мембранные пузырьки веществ (например, нейромедиаторов). Цитоскелет нейрона состоит из фибрилл разного диаметра: Микротрубочки (Д = 20-30 нм) - состоят из белка тубулина и тянутся от нейрона по аксону, вплоть до нервных окончаний. Нейрофиламенты (Д = 10 нм) - вместе с микротрубочками обеспечивают внутриклеточный транспорт веществ. Микрофиламенты (Д = 5 нм) - состоят из белков актина и миозина, особенно выражены в растущих нервных отростках и в . В теле нейрона выявляется развитый синтетический аппарат, гранулярная ЭПС нейрона окрашивается базофильно и известна под названием «тигроид». Тигроид проникает в начальные отделы дендритов, но располагается на заметном расстоянии от начала аксона, что служит гистологическим признаком аксона.

Различается антероградный (от тела) и ретроградный (к телу) аксонный транспорт.

Дендриты и аксон

Аксон - обычно длинный отросток, приспособленный для проведения от тела нейрона. Дендриты - как правило, короткие и сильно разветвлённые отростки, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов). Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи со многими (до 20-и тысяч) другими нейронами.

Дендриты делятся дихотомически, аксоны же дают коллатерали. В узлах ветвления обычно сосредоточены митохондрии.

Дендриты не имеют миелиновой оболочки, аксоны же могут её иметь. Местом генерации возбуждения у большинства нейронов является аксонный холмик - образование в месте отхождения аксона от тела. У всех нейронов эта зона называется триггерной.

Си́напс (греч. σύναψις, от συνάπτειν - обнимать, обхватывать, пожимать руку) - место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторнойклеткой. Служит для передачи между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. Одни синапсывызывают деполяризацию нейрона, другие - гиперполяризацию; первые являются возбуждающими, вторые - тормозными. Обычно для возбуждения нейрона необходимо раздражение от нескольких возбуждающих синапсов.

Термин был введён в 1897 г. английским физиологом Чарльзом Шеррингтоном.

Классификация

Структурная классификация

На основании числа и расположения дендритов и аксона нейроны делятся на безаксонные, униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные (много дендритных стволов, обычно эфферентные) нейроны.

Безаксонные нейроны - небольшие клетки, сгруппированы вблизи в межпозвоночных ганглиях, не имеющие анатомических признаков разделения отростков на дендриты и аксоны. Все отростки у клетки очень похожи. Функциональное назначение безаксонных нейронов слабо изучено.

Униполярные нейроны - нейроны с одним отростком, присутствуют, например в сенсорном ядре тройничного нерва в .

Биполярные нейроны - нейроны, имеющие один аксон и один дендрит, расположенные в специализированных сенсорных органах - сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях.

Мультиполярные нейроны - нейроны с одним аксоном и несколькими дендритами. Данный вид нервных клеток преобладает в .

Псевдоуниполярные нейроны - являются уникальными в своём роде. От тела отходит один отросток, который сразу же Т-образно делится. Весь этот единый тракт покрыт миелиновой оболочкой и структурно представляет собой аксон, хотя по одной из ветвей возбуждение идёт не от, а к телу нейрона. Структурно дендритами являются разветвления на конце этого (периферического) отростка. Триггерной зоной является начало этого разветвления (то есть находится вне тела клетки). Такие нейроны встречаются в спинальных ганглиях.

Функциональная классификация

По положению в рефлекторной дуге различают афферентные нейроны (чувствительные нейроны), эфферентные нейроны (часть из них называется двигательными нейронами, иногда это не очень точное название распространяется на всю группу эфферентов) и интернейроны (вставочные нейроны).

Афферентные нейроны (чувствительный, сенсорный или рецепторный). К нейронам данного типа относятся первичные клетки и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.

Эфферентные нейроны (эффекторный, двигательный или моторный). К нейронам данного типа относятся конечные нейроны - ультиматные и предпоследние - не ультиматные.

Ассоциативные нейроны (вставочные или интернейроны) - группа нейронов осуществляет связь между эфферентными и афферентными, их делят на интризитные, комиссуральные и проекционные.

Секреторные нейроны - нейроны, секретирующие высокоактивные вещества (нейрогормоны). У них хорошо развит комплекс Гольджи, аксон заканчивается аксовазальными синапсами.

Морфологическая классификация

Морфологическое строение нейронов многообразно. В связи с этим при классификации нейронов применяют несколько принципов:

  • учитывают размеры и форму тела нейрона;
  • количество и характер ветвления отростков;
  • длину нейрона и наличие специализированных оболочек.

По форме клетки, нейроны могут быть сферическими, зернистыми, звездчатыми, пирамидными, грушевидными, веретеновидными, неправильными и т. д. Размер тела нейрона варьирует от 5 мкм у малых зернистых клеток до 120-150 мкм у гигантских пирамидных нейронов. Длина нейрона у человека составляет от 150 мкм до 120 см.

По количеству отростков выделяют следующие морфологические типы нейронов:

  • униполярные (с одним отростком) нейроциты, присутствующие, например, в сенсорном ядре тройничного нерва в ;
  • псевдоуниполярные клетки, сгруппированные вблизи в межпозвоночных ганглиях;
  • биполярные нейроны (имеют один аксон и один дендрит), расположенные в специализированных сенсорных органах - сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях;
  • мультиполярные нейроны (имеют один аксон и несколько дендритов), преобладающие в ЦНС.

Развитие и рост нейрона

Нейрон развивается из небольшой клетки-предшественницы, которая перестаёт делиться ещё до того, как выпустит свои отростки. (Однако, вопрос о делении нейронов в настоящее время остаётся дискуссионным) Как правило, первым начинает расти аксон, а дендриты образуются позже. На конце развивающегося отростка нервной клетки появляется утолщение неправильной формы, которое, видимо, и прокладывает путь через окружающую ткань. Это утолщение называется конусом роста нервной клетки. Он состоит из уплощенной части отростка нервной клетки с множеством тонких шипиков. Микрошипики имеют толщину от 0,1 до 0,2 мкм и могут достигать 50 мкм в длину, широкая и плоская область конуса роста имеет ширину и длину около 5 мкм, хотя форма её может изменяться. Промежутки между микрошипиками конуса роста покрыты складчатой мембраной. Микрошипики находятся в постоянном движении - некоторые втягиваются в конус роста, другие удлиняются, отклоняются в разные стороны, прикасаются к субстрату и могут прилипать к нему.

Конус роста заполнен мелкими, иногда соединёнными друг с другом, мембранными пузырьками неправильной формы. Непосредственно под складчатыми участками мембраны и в шипиках находится плотная масса перепутанных актиновых филаментов. Конус роста содержит также митохондрии, микротрубочки и нейрофиламенты, имеющиеся в теле нейрона.

Вероятно, микротрубочки и нейрофиламенты удлиняются главным образом за счёт добавления вновь синтезированных субъединиц у основания отростка нейрона. Они продвигаются со скоростью около миллиметра в сутки, что соответствует скорости медленного аксонного транспорта в зрелом нейроне. Поскольку примерно такова и средняя скорость продвижения конуса роста, возможно, что во время роста отростка нейрона в его дальнем конце не происходит ни сборки, ни разрушения микротрубочек и нейрофиламентов. Новый мембранный материал добавляется, видимо, у окончания. Конус роста - это область быстрого экзоцитоза и эндоцитоза, о чём свидетельствует множество находящихся здесь пузырьков. Мелкие мембранные пузырьки переносятся по отростку нейрона от тела клетки к конусу роста с потоком быстрого аксонного транспорта. Мембранный материал, видимо, синтезируется в теле нейрона, переносится к конусу роста в виде пузырьков и включается здесь в плазматическую мембрану путём экзоцитоза, удлиняя таким образом отросток нервной клетки.

Росту аксонов и дендритов обычно предшествует фаза миграции нейронов, когда незрелые нейроны расселяются и находят себе постоянное место.

Нервные клетки или нейроны представляют собой электрически возбудимые клетки, которые обрабатывают и передают информацию с помощью электрических импульсов. Такие сигналы передаются между нейронами через синапсы . Нейроны могут связываться друг с другом в нейронные сети. Нейроны являются основным материалом головного и спинного мозга центральной нервной системы человека, а также ганглий периферической нервной системы человека.

Нейроны бывают нескольких типов в зависимости от функций:

  • Сенсорные нейроны, реагирующие на такие раздражители как свет, звук, прикосновения, а также на другие стимулы, влияющие на клетки органов чувств.
  • Двигательные нейроны, посылающие сигналы к мышцам.
  • Интернейроны, соединяющие одни нейроны с другими в головном мозге, спинном мозге или в нейронных сетях.

Обычный нейрон состоит из тела клетки (сомы ), дендритов и аксона . Дендриты представляют собой тонкие структуры, идущие от тела клетки, они имеют многоразовое ветвление и размеры в несколько сотен микрометров. Аксон, который в миелизированном виде ещё называют нервным волокном, представляет собой специализированное клеточное расширение, берущее начало из тела клетки из места под названием аксоновый холмик (бугорок), распространяется на расстояние до одного метра. Часто нервные волокна связываются в пучки и в периферическую нервную систему, формируя нервные нити.

Содержащая ядро цитоплазматическая часть клетки называется телом клетки или сомой. Обычно, тело каждой клетки имеет размеры от 4 до 100 мкм в диаметре может быть различных форм: веретенообразной, грушевидной, пирамидальной, а также намного реже звездообразной формы. Тело нервной клетки содержит большое сферическое центральное ядро с множеством гранул Ниссля с цитоплазматической матрицей (нейроплазмой). Гранулы Ниссля содержат в себе рибонуклеопротеид и принимают участие в синтезе белка. Нейроплазма также содержит в себе митохондрии и тела Гольджи, меланин и липохромные пигментные гранулы. Количество данных клеточных органелл зависит от функциональных особенностей клетки. Следует отметить, что тело клетки существует с нефункциональной центросомой, что не даёт нейронам возможности делиться. Вот почему количество нейронов у взрослого человека равно количеству нейронов при рождении. По всей длине аксона и дендритов присутствуют хрупкие цитоплазматические нити, называемые нейрофибриллами, берущие своё начало от тела клетки. Тело клетки и её придаток окружены тонкой мембраной под названием нейронная мембрана. Описанные выше клеточные тела присутствуют в сером веществе головного и спинного мозга.

Короткие цитоплазматические придатки тела клетки, получающие импульсы от других нейронов называются дендритами. Дендриты проводят нервные импульсы в тело клетки. Дендриты имеют начальную толщину от 5 до 10 мкм, но постепенного их толщина уменьшается и они продолжаются обильным ветвлением. Дендриты получают импульс от аксона соседнего нейрона через синапс и проводят импульс к клеточному телу, поэтому их называют рецептивными органами.

Длинный цитоплазматический придаток клеточного тела, передающий импульс от тела клетки к соседнему нейрону называется аксон. Аксон значительно превышает размеры дендритов. Аксон берет своё начало в конической высоте тела клетки, называемым аксоновым холмиком, лишенным гранул Ниссля. Длина аксона является переменной и зависит от функционально связи нейрона. Цитоплазма аксона или аксоплазма содержит нейрофибриллы, митохондрии, но в ней нет гранул Ниссля. Мембрана, которая покрывает аксон имеет название аксолемма. Аксон может давать отростки, называемые добавочными вдоль своего направления, а ближе к концу аксон имеет интенсивное ветвление, заканчивающееся кистью, последняя его часть имеет увеличение для формирования бульбы. Аксоны присутствуют в белом веществе центральной и периферической нервной системы. Нервные волокна (аксоны) покрыты тонкой мембраной, которая богата липидами и называется миелиновой оболочкой. Миелиновая оболочка сформирована шванновскими клетками, которые покрывают нервные волокна. Часть аксона, не покрытая миелиновой оболочкой представляет собой узел смежных миелинизированных сегментов называемым узлом Ранвье. Функция аксона заключается в передаче импульса из клеточного тела одного нейрона в дендрон другого нейрона через синапс. Нейроны специально предназначены для передачи межклеточных сигналов. Разнообразие нейронов связано с выполняемыми ими функциями, размеры сомы нейронов варьируются от 4 до 100 мкм в диаметре. Ядро сомы имеет размеры от 3 до 18 мкм. Дендриты нейрона представляют собой клеточные придатки, образующие целые дендритные ветви.

Аксон является самой тонкой структурой нейрона, но его длина может превышать диаметр сомы в несколько сот и тысяч раз. Аксон несёт нервные сигналы от сомы. То место, где из сомы выходит аксон называется аксоновым холмиком. Длина аксонов может быть разной и достигает в некоторых участках организма длины более 1 метра (например от основания позвоночника до кончика пальца ноги).

Между аксонами и дендритами существуют некоторые структурные различия. Так, типичные аксоны практически никогда не содержат рибосомы, за исключением некоторых в начальном сегменте. Дендриты содержат гранулированный эндоплазматический ретикулум или рибосомы, уменьшающийся с удалением от тела клетки.

Мозг человека имеет очень огромное количество синапсов. Так, каждый из 100 миллиардов нейронов содержит в среднем 7 000 синаптических связей с другими нейронами. Установлено, что мозг трехлетнего ребёнка имеет около 1 квадриллиона синапсов. Количество этих синапсов уменьшается с возрастом и стабилизируется у взрослых. У взрослого количество синапсов составляет от 100 до 500 триллионов. Согласно исследованиям мозг человека содержит около 100 миллиардов нейронов и 100 триллионов синапсов.

Виды нейронов

Нейроны бывают нескольких форм и размеров и классифицируются по их морфологии функциям. Так например, анатом Камилло Гольджи разделял нейроны на две группы. К первой группе он отнёс нейроны с длинными аксонами, которые передают сигналы на длинные расстояния. Ко второй группе он относил нейроны с короткими аксонами, которые можно было спутать с дендритами.

Нейроны классифицируются по своему строению на следующие группы:

  • Однополярные . Аксон и дендриты выходят из одного придатка.
  • Биполярные . Аксон и одиночный дендрит располагаются на разных сторонах сомы.
  • Многополярные . Не менее двух дендритов располагаются отдельно от аксона.
  • Тип Гольджи I . Нейрон имеет длинный аксон.
  • Тип Гольджи II . Нейроны, у которых аксоны расположены локально.
  • Анаксонные нейроны . Когда аксон не отличим от дендритов.
  • Корзинные клетки - интернейроны, формирующие плотно сплетённые окончания по всей соме клеток-мишеней. Присутствуют в коре головного мозга и в мозжечке.
  • Клетки Беца . Представляют собой большие двигательные нейроны.
  • Клетки Люгаро - интернейроны мозжечка.
  • Средние остроконечные нейроны . Присутствуют в полосатом теле.
  • Клетки Пуркинье . Представляют собой крупные многополярные нейроны мозжечка типа Гольджи I.
  • Пирамидальные клетки . Нейроны с сомой треугольной формы типа Гольджи II.
  • Клетки Реншоу . Нейроны, с обеих концов связанные с альфа моторными нейронами.
  • Униполярный кистевидные клетки . Интернейроны, которые имеют уникальные дендритные окончания в виде кисти.
  • Клетки переднего роговидного отростка . Представляют собой мотонейроны, расположенные в спинном мозге.
  • Шпиндельные клетки . Интернейроны, соединяющие отдаленные области мозга.
  • Афферентные нейроны . Нейроны, которые передают сигналы от тканей и органов в центральную нервную систему.
  • Эфферентный нейроны . Нейроны, передающие сигналы от центральной нервной системы к эффекторным клеткам.
  • Интернейроны , подключающие нейроны в конкретных областях центральной нервной системы.

Действие нейронов

Все нейроны являются электрически возбудимыми и поддерживают напряжение на своих мембранах с помощью метаболически проводимых ионных насосов, сочетающихся с ионными каналами, которые встроены в мембрану для генерации ионных дифференциалов, таких как натрий, хлорид, кальций и калий. Изменения напряжения в кросс-мембране приводит к изменению функций вольт-зависимых ионных калом. При изменении напряжения в достаточно большом уровне электрохимический импульс вызывает генерацию активного потенциала, который быстро перемещается вдоль клеток аксона, активируя синаптические связи с другими клетками.

Большинство нервных клеток являются базовым типом. Определенный стимул вызывает электрический разряд в клетке, разряд подобный разряду конденсатора. Это продуцирует электрический импульсы равный примерно 50-70 милливольтам, который называется активным потенциалом. Электрический импульс распространяется по волокну, по аксонам. Скорость распространения импульса зависит от волокна, это примерно в среднем десятки метров в секунду, что заметно ниже скорости распространения электричества, которая равна скорости света. Как только импульс достигает пучка аксона, он передаётся на соседние нервные клетки под действием химического медиатора.

Нейрон действует на другие нейроны выпуская нейротрансмиттер, связывающийся с химическими рецепторами. Эффект от постсинаптического нейрона определяется не пресинаптическим нейроном или нейротрансмиттером, а типом активируемого рецептора. Нейротрансмиттер представляет собой как бы ключ, а рецептор замок. При этом один ключ может быть использован для открытия «замков» разного типа. Рецепторы в свою очередь классифицируются на возбуждающие (увеличивающие скорость передачи), ингибирующие (замедляющие скорость передачи) и модулирующие (вызывающие длительные эффекты).

Связь между нейронами осуществляется через синапсы, в этом месте находится окончание аксона (аксоновый терминал). Нейроны, такие например как клетки Пуркинье в мозжечке могут иметь более тысячи дендритных переходов, осуществляя связь с десятками тысяч других нейронов. Другие нейроны (крупные нейронные клетки супраоптического ядра) имеют лишь один или два дендрита, каждый из которых получает тысячи синапсов. Синапсы могут быть как возбуждающими так и ингибирующими. Некоторые нейроны связываются между собой посредством электрических синапсов, которые являются прямыми электрическими соединениями между клетками.

В химическом синапсе при достижении потенциалом действия аксона, происходит открытие напряжения в кальциевом канале, что позволяет ионам кальция проникнуть в терминал. Кальций заставляет синаптические пузырьки, наполненные молекулами нейромедиаторами проникать в мембрану, высвобождая содержимое в синаптическую щель. Происходит процесс диффундирования медиаторов через синаптическую щель, которые в свою очередь активируют рецепторы на постсинаптическом нейроне. Кроме того, высоко цитозольный кальций в терминале аксона вызывает усвоение митохондриального кальция, который в свою очередь активирует митохондриальный энергетический метаболизм для производства АТФ, что поддерживает непрерывную нейротрансмиссию.

НЕЙРОН – это отдельная нервная клетка, строительный блок мозга. Она передает нервные импульсы по единственному длинному волокну (аксону) и получает их по многочисленным коротким волокнам (дендритам) (Ч. Стивенс).

Хотя нейроны, или нервные клетки, имеют те же самые гены, то же общее строе­ние и тот же биохимический аппарат, что и другие клетки, они обладают и уникальными особенностями, которые делают функцию мозга совершенно отличной от функции, скажем, печени. Важными особенностями нейронов являются характерная форма, способность на­ружной мембраны генерировать нервные импульсы и наличие уникаль­ной структуры – синапса, служащего для передачи информации от од­ного нейрона другому.

Полагают, что мозг человека состоит из 10 11 нейронов: это прибли­зительно столько же, сколько звезд в нашей Галактике. Не найдется и двух нейронов, одинаковых по виду. Несмотря на это, их формы обы­чно укладываются в небольшое число широких категорий, и большин­ству нейронов присущи определенные структурные особенности, позволяющие выделить три области клетки: клеточное тело, дендриты и аксон. Тело содержит ядро и биохимический аппарат синтеза фермен­тов и других молекул, необходимых для жизнедеятельности клетки. Обычно тело нейрона имеет приблизительно сферическую или пирами­дальную форму. Дендриты представляют собой тонкие трубчатые вы­росты, которые многократно делятся и образуют ветвистое дерево вокруг тела клетки. Они создают ту основную физическую поверхность, на которую поступают идущие к данному нейрону сигналы. Аксон тя­нется далеко от тела клетки и служит той линией связи, по которой сиг­налы, генерируемые в теле данной клетки, могут передаваться на боль­шие расстояния в другие части мозга и остальную нервную систему. Аксон отличается от дендритов как по строению, так и по свойствам своей наружной мембраны. Большинство аксонов длиннее и тоньше дендритов и имеет отличный от них характер ветвления: если отростки дендритов в основном группируются вокруг клеточного тела, то от­ростки аксонов располагаются на конце волокна, в том месте, где аксон взаимодействует с другими нейронами.

Функционирование мозга связано с движением потоков информации по сложным цепям, состоящим из нейронных сетей. Информация передается от одной клетки к другой в специализированных местах контакта – синапсах. Типичный нейрон может иметь от 1000 до 10000 синапсов и получать информацию от 1000 других нейронов. Хотя в своем большинстве синапсы образуются между аксонами одной клетки и дендритами другой, существуют и иные типы синаптических контактов: между аксоном и аксоном, между дендритом и дендритом и между аксоном и телом клетки. В области синапса аксон обычно расширяется, образуя на конце пресинаптическую бляшку, которая является передающей информацию частью контакта. Концевая бляшка содержит мелкие сферические обра­зования, называемые синаптическими пузырьками, каждый из которых содержит несколько тысяч молекул химического медиатора. По прибы­тии в пресинаптическое окончание нервного импульса некоторые из пузырьков выбрасывают свое содержимое в узкую щель, отделяющую бляшку от мембраны дендрита другой клетки, предназначенного для приема таких химических сигналов. Таким образом, информация передается от одного нейрона к другому с помощью некоторого посредника или медиатора. Импульсация нейрона отражает активацию воздействующими нейронами сотен синапсов. Некоторые синапсы являются возбуждающими, т.е. они способствуют генерированию импульсов, тогда как другие – тормозные – способны аннулировать действие сигналов, которые в их отсутствие могли бы возбудить постсинаптический нейрон.

Хотя нейроны и являются строительными блоками мозга, это не единственные клетки, которые в нем имеются. Так, кислород и пита­тельные вещества поставляются плотной сетью кровеносных сосудов. Существует потребность и в соединительной ткани, особенно на поверхности мозга. Один из важных классов клеток центральной нервной системы, как ранее отмечалось, составляют глиальные клетки, или глия. Глия занимает в нервной системе практически всё пространство, которое не занято самими нейронами. Хотя функция глии пока не вполне изучена, по-видимому, она обеспечивает структурную и метаболическую опору для сети нейронов.

В аксонах, имеющих миелиновую оболочку, распространение нервного импульса происходит путем его перескакивания от перехвата к перехвату, где внеклеточная жидкость оказывается в непосредственном контакте с клеточной мембраной. Эволюционный смысл миелиновой оболочки, по-видимому, состоит в экономии метаболической энер­гии нейрона. Как правило, миелинизированные нервные волокна проводят нервные импульсы быстрее, чем немиелинизированные.

Нейроны способны выполнять свою функцию только благодаря то­му, что их наружная мембрана обладает особыми свойствами. Мембра­на аксона по всей его длине специализирована для проведения электри­ческого импульса. Мембрана аксонных окончаний способна выделять медиатор, а мембрана дендритов реагирует на медиатор. Кроме того, мембрана обеспечивает узнавание других клеток в процессе эмбрио­нального развития, так что каждая клетка отыскивает предназначенное ей место в сети, состоящей из 10 11 клеток. В связи с этим многие совре­менные исследования сосредоточены на изучении всех тех свойств мем­браны, которые ответственны за нервный импульс, синаптическую передачу, узнавание клеток и установление контактов между клетками.

Мембрана нейрона, как и наружная мембрана любой клетки, имеет в толщину около 5 нм и состоит из двух слоев липидных молекул, упо­рядоченных таким образом, что их гидрофильные концы обращены в сторону водной фазы, находящейся внутри и снаружи клетки, а гидро­фобные концы повернуты в сторону от водной фазы и образуют вну­треннюю часть мембраны. Липидная часть мембраны приблизительно одинакова у клеток всех типов. Что делает одну мембрану отличной от другой, так это специфические белки, которые связаны с мембраной тем или иным способом. Белки, которые фактически встроены в двойной липидный слой, называются внутренними белками. Другие белки, пери­ферические мембранные белки, прикреплены к мембранной поверхности, но не являются неотъемлемой частью ее структуры. В связи с тем, что мембранные липиды – жидкости, даже внутренние белки часто могут свободно перемещаться с места на место путем диффузии. Однако в не­которых случаях белки жестко закрепляются с помощью вспомога­тельных структур.

Мембранные белки всех клеток распадаются на пять классов: на­сосы, каналы, рецепторы, ферменты и структурные белки. Насосы расходуют метаболическую энергию для перемещения ионов и молекул против концентрационных градиентов и поддерживают необходимые концентрации этих молекул в клетке. Поскольку заряженные молекулы не могут пройти через сам двойной липидный слой, клетки приобрели в процессе эволюции белковые каналы, обеспечивающие избирательные пути для диффузии специфических ионов. Клеточные мембраны должны узнавать и прикреплять многие типы молекул. Эти функции выполняют рецепторные белки, которые представляют собой центры связывания, обладающие высокой специфичностью и сродством. Ферменты размещаются внутри мембраны или на ней, чем облегчается протекание химических реакций у мембранной поверхности. Наконец, структурные белки обеспечивают соединение клеток в органы и поддержание субклеточной структуры. Эти пять классов мембранных белков не обязательно взаимно исключают друг друга. Так, например, тот или иной белок может быть одновременно и рецептором, и ферментом, и насосом

Мембранные белки – это ключ к пониманию функций нейрона, а следовательно, и функций мозга. Поскольку они занимают такое центральное место в современных представлениях о нейроне, следует акцентировать внимание на описании ионного насоса, различных типов ка­налов и ряда других белков, которые в совокупности наделяют нейроны их уникальными свойствами. Общая идея состоит в том, чтобы сумми­ровать важные характеристики мембранных белков и показать, как эти характеристики определяют нервный импульс и другие сложные особен­ности функций нейрона.

Подобно всем другим клеткам нейрон способен поддерживать по­стоянство своей внутренней среды, заметно отличающейся по составу от окружающей его жидкости. Особенно поразительны различия в кон­центрациях ионов натрия и калия. Наружная среда приблизительно в 10 раз богаче натрием, чем внутренняя, а внутренняя среда примерно в 10 раз богаче калием, чем наружная. Как калий, так и натрий способны проникать через поры в клеточной мембране, поэтому некоторый насос должен непрерывно производить обмен вошедших в клетку ионов на­трия на ионы калия из наружной среды. Такое выкачивание натрия осу­ществляется внутренним мембранным белком, называемым Na-K-аде-нозинтрифосфатазным насосом, или, как его чаще называют, натриевым насосом.

Белковая молекула натриевого насоса (или комплекс белковых субъединиц) имеет молекулярный вес около 275 000 атомных единиц и размеры порядка 6х8 нм 2 , что несколько больше толщины клеточной мем­браны. Каждый натриевый насос может использовать энергию, запасен­ную в форме фосфатной связи в аденозинтрифосфате (АТФ), для того чтобы обменять три иона натрия внутренней среды клетки на два иона калия наружной среды. Работая с максимальной скоростью, каждый на­сос способен транспортировать через мембрану около 200 ионов натрия и 130 ионов калия в секунду. Однако фактическая скорость регулируется в соответствии с потребностями клетки. У большинства нейронов имеется от 100 до 200 натриевых насосов на квадратный микрон мем­бранной поверхности, но в некоторых участках этой поверхности их плотность почти в 10 раз выше. Типичный мелкий нейрон имеет, по-ви­димому, порядка миллиона натриевых насосов, способных перемещать около 200 миллионов ионов натрия в секунду. Именно трансмем­бранные градиенты натрия и калия обеспечивают возможность проведе­ния по нейрону нервного импульса.

Мембранные белки, которые служат каналами, существенны для многих сторон деятельности нейрона и в особенности для генерирования нервного импульса и синаптической передачи. Чтобы представить значе­ние каналов для электрической активности мозга, следует описать формирование и рассмотреть свойства упомянутых каналов.

Поскольку концентрации ионов натрия и калия по ту и другую сто­рону мембраны различаются, внутренность аксона имеет отрица­тельный потенциал примерно в 70 мВ по отношению к наружной среде. В середине XX в. ан­глийские исследователи А. Ходжкин, А. Хаксли и Б. Катц в своих классических работах по изучению передачи нервного импульса вдоль гигантского аксона кальмара показали, что распространение нервного импульса сопровождается резкими измене­ниями проницаемости мембраны аксона для ионов натрия и калия. Ког­да нервный импульс возникает в основании аксона (в большинстве слу­чаев он генерируется клеточным телом в ответ на активацию дендритных синапсов), трансмембранная разность потенциалов в этом месте локально понижается. Непосредственно впереди области с изме­ненным потенциалом (по направлению распространения нерв­ного импульса) открываются мембранные каналы, пропускающие в клетку ионы натрия.

Этот процесс является самоусиливающимся: поток ионов натрия через мембрану способствует открыванию большего числа каналов, облегчает другим ионам возможность следовать за ними. Проникшие в клетку ионы натрия изменяют отрицательный внутренний потенциал мембраны на положительный. Вскоре после открывания натриевые ка­налы закрываются, но теперь открывается другая группа каналов, которая позволяет ионам калия выходить наружу. Этот поток восстанавли­вает потенциал внутри аксона до величины его потенциала покоя, т.е. до 70 мВ. Резкий скачок потенциала сначала в положительную, а за­тем в отрицательную сторону, который выглядит на экране осциллографа как пик («спайк»), известен под названием потенциала действия и является электрическим выражением нервного импульса. Волна изме­нения потенциала стремительно проносится по аксону до самого его конца во многом подобно тому, как бежит пламя по бикфордову шнуру.

Это краткое описание нервного импульса иллюстрирует важность каналов для электрической активности нейронов и подчеркивает два фундаментальных свойства каналов: избирательность и наличие во­ротных механизмов. Каналы проницаемы избирательно, и степень изби­рательности варьирует в широких пределах. Так, каналы одного типа позволяют проходить ионам натрия, но сильно препятствуют прохож­дению ионов калия, тогда как каналы другого типа делают обратное. Однако избирательность редко бывает абсолютной. Канал одного типа, который практически не обладает избирательностью, позволяет прохо­дить примерно 85 ионам натрия на каждые 100 ионов калия; другой ка­нал, с большей избирательностью, пропускает только около 7 ионов натрия на каждые 100 ионов калия. Канал первого типа, известный как активируемый ацетилхолином, имеет пору диаметром около 0,8 нм, ко­торая заполнена водой. У канала второго типа, известного как ка­лиевый канал, пора значительно меньше и содержит меньше воды.

Ион натрия приблизительно на 30% меньше иона калия. Точная мо­лекулярная структура, позволяющая более крупным ионам проходить через клеточную мембрану легче, чем более мелким, неизвестна. Однако общие принципы, лежащие в основе такой дискриминации, понятны. Они включают взаимодействия между ионами и участками канальной структуры, сочетающиеся со специфическим упорядочением молекул воды внутри поры.

Воротные механизмы, регулирующие открывание и закрывание мембранных каналов, представлены двумя основными типами. Канал одного типа, упоминавшийся выше при описании нервного импульса, откры­вается и закрывается в ответ на изменения потенциала клеточной мембраны, поэтому говорят, что он управляется электрически. Второй тип каналов управляется химически. Такие каналы реагируют лишь сла­бо, если вообще реагируют, на изменения потенциала, но открываются, когда особая молекула – медиатор – связывается с некоторой рецепторной областью на белке канала. Химически управляемые каналы обнару­жены в рецептивной мембране синапсов: они ответственны за перевод химических сигналов, посылаемых окончаниями аксона в процессе синаптической передачи, в изменения ионной проницаемости. Химиче­ски управляемые каналы обычно именуют в соответствии с их специфи­ческим медиатором. Так, например, говорят об АХ-активируемых кана­лах или о ГАМК-активируемых каналах (АХ – ацетилхолин, ГАМК – гамма-аминомасляная кислота). Электрически управляемые каналы принято называть по иону, наиболее легко проходящему через данный канал.

Функционируя, белки обычно изменяют свою форму. Такие измене­ния формы, называемые конформационными, особенно ярко выражены у сократимых белков, ответственных за движение клеток, но они не ме­нее важны и для многих ферментов и других белков. Конформационные изменения канальных белков составляют основу воротных механизмов, поскольку они обеспечивают открывание и закрывание канала за счет малых перемещений частей молекулы, расположенных в критическом месте и позволяющих блокировать или освобождать пору.

Когда электрически или химически управляемые каналы открывают­ся и пропускают ионы, возникает электрический ток, который можно измерить. В нескольких случаях удалось зарегистриро­вать ток, проходящий через одиночный канал, так что его открывание и закрывание можно было исследовать непосредственно. Обнаружи­лось, что время, на протяжении которого канал остается открытым, варьирует случайным образом, так как открывание и закрывание канала есть результат некоторых конформационных изменений белковой моле­кулы, встроенной в мембрану. Наличие случайности в воротных процес­сах проистекает из случайных столкновений молекул воды и других мо­лекул со структурными элементами канала.

Еще в 50-60-х гг. XX в.нейрон в том виде, как его обычно описывали в учебниках, казался очень простой структурой. Теперь благодаря таким эффективным методам исследования, как электронная микроскопия и внутриклеточная регистрация при помощи микроэлектродов, известно, что нейроны имеют исключительно сложную морфо-функциональную организацию и отличаются большим разнообразием.

Конечной целью комплекса наук (анатомии и физиологии ЦНС, физиологии ВНД и нейропсихологии) является объяснение того, как нейроны, действуя совместно, могут привести к реализации поведения, наблюдаемого у целого организма. Поэтому чрезвычайно важно прежде всего установить, из чего состоят, как устроены, что могут и чего не могут делать отдельные нейроны. Эта необходимость требует изучения анатомии и физиологии. Если объект исследования находится «на стыке наук», то исследование неминуемо сопряжено с трудностями. Грамотный психолог должен знать анатомию и физиологию и в то же время иметь прочные знания по психологии.

До середины XIX в. был широко распространен взгляд на нервную систему как на непрерывное сплетение трубочек (наподобие сосудистой системы), по которым течёт жидкость или электричество. Работа анатомов – Гиса, Кёлликера, Рамон-и-Кахаля – позволила Вальдейеру выдвинуть «нейронную теорию». Вальдейер был убеждён, что нервная система состоит из множества отдельных клеток, называемых «нейронами», и что от одной клетки к другой проводится «нервная энергия». Еще в 1935 г. были такие учёные, которые не разделяли этого убеждения, однако с изобретением электронного микроскопа появилась возможность продемонстрировать наличие промежутков между отдельными клетками. В ходе этих и многих других исследований было однозначно выяснено, что нервная клетка, или нейрон, является основной структурно-функциональной единицей нервной системы.

Первые исследования по физиологии нейронов проводились в значительной мере на изолированных участках периферических нервов, которые сохраняют в течение некоторого времени нормальные функции, если поместить их в соответствующие условия. Вследствие этого многие из свойств, которые были выявлены и приписаны нейронам вообще, в действительности относились лишь к определенным частям некоторых, довольно нетипичных нейронов. На протяжении многих лет наиболее широко была распространена теория нервного проведения, утверждавшая, что электрический ток, назывызываемый импульсом в одном нейроне, ответствен за разряд других нейронов, с которыми тот контактирует.

Эта теория, хотя она и была неправильной, вызвала к жизни многие ценные исследования на таких простых нервных цепях, как нервномышечное соединение и спинномозговые связи, ответственные за рефлекторные реакции. Но постепенно данных, противоречивших электрической теории нервного проведения, становилось всё больше, и их нельзя было не учитывать. Наконец, за последние 20-25 лет была создана более сложная и близкая к истине модель нейрона.

КЛАССИФИКАЦИЯ НЕЙРОНОВ:

Классификация нейронов по числу отростков

1. Униполярные нейроны имеют 1 отросток. По мнению большинства исследователей, такие нейроны не встречаются в нервной системе млекопитающих и человека.

2. Биполярные нейроны – имеют 2 отростка: аксон и дендрит. Разновидностью биполярных нейронов являются псевдоуниполярные нейроны спинномозговых ганглиев, где оба отростка (аксон и дендрит) отходят от единого выроста клеточного тела.

3. Мультиполярные нейроны – имеют один аксон и несколько дендритов. Их можно выделить в любом отделе нервной системы.

Классификация нейронов по форме

Веретеновидные, грушевидные, пирамидные, полигональные. Такой подход лежит в основе изучения цитоархитектоники мозга.

Классификация по выполняемой функции

    Чувствительный (афферентный) – помогающий воспринимать внешние раздражители (стимулы).

    Ассоциативный (вставочный интернейрон).

    Двигательные (эфферентные) – вызывающие сокращения и движе­ния. Именно эти нейроны получили наименование «мотонейроны», т.е. двигательные нейроны, сконцентрированные в двигательных ядрах передних рогов спинного мозга и стволовой части головного мозга.

Биохимическая классификация

1. Холинергические (медиатор – АХ – ацетилхолин).

2. Катехоламинергические (А, НА, дофамин).

3. Аминокислотные (глицин, таурин).

По принципу положения их в сети нейронов

Первичные, вторичные, третичные и т.д.

Исходя из такой классификации, выделяют и типы нервных сетей:

    иерархические (восходящие и нисходящие);

    локальные – передающие возбуждение на каком-либо одном уровне;

    дивергентные с одним входом (находящиеся в основном только в среднем мозге и в стволе мозга) – осуществляющие связь сразу со всеми уровнями иерархической сети. Нейроны таких сетей называют «неспецифическими».

Именно к неспецифическим сетям относятся ретикулярные нейроны – многоугольные нейроны, образующие промежуточную зону серого вещества спинного мозга (включая боковые рога), ядра ретикулярной формации продолговатого и среднего мозга (включая вегетативные ядра соответствующих черепно-мозговых нервов), образования субталамической и гипоталамической областей промежуточного мозга.

Нейроны можно различать в зависимости от того, имеют ли они длинные (клетка Гольджи, тип 1) или короткие аксоны (клетка Гольджи, тип 2). В рамках этой классификации короткими считаются те аксоны, ветви которых остаются в непосредственной близости от тела клетки. Итак, клетки 1-го типа Гольджи (эфферентные ) – нейроны с длинным аксоном, продолжающимся в белом веществе мозга. А клетки 2-го типа Гольджи (вставочные ) – нейроны с коротким аксоном, разветвления которого выходят за пределы серого вещества мозга.

Клетки Гассера А, В и С-типов

Нейроны различаются также по скорости проведения импульсов по аксонам. Гассер разделил волокна на три основные группы: А, В и С. Волокна групп А и В миелинизированы. Различия между группами А и В несущественны; нейроны типа В обнаруживаются только в преганглионарной части вегетативной нервной системы. Диаметр волокон типа А варьирует от 4 до 20 мкм, а скорость, с которой импульсы проходят по ним, определяемая в м/сек, приблизительно равна величине их диаметра в микронах, умноженной на 6. С-волокна значительно меньше по диаметру (0,3 до 1,3 мкм), а скорость проведения импульсов в них несколько меньше величины диаметра, умноженной на 2.

Гассер подразделял А-волокна по скорости проведения. Волокна с наибольшей скоростью проведения были названы «А-альфа», средней – «А-бета» и наименьшей – «А-гамма». Поскольку скорость проведения прямо пропорциональна диаметру, эти обозначения иногда используются для классификации типов миелинизированных волокон. В связи с этим Ллойд предложил классификацию, основанную непосредственно на диаметре волокон. К группе 1 относятся миелинизированные волокна диаметром 12-21 мкм, к группе 2 – 6-12 мкм, к группе 3 – 1-6 мкм. С-волокна клеток Гассера составляют группу 4.

Формы нервных клеток. Пирамидальные нейроны Беца

Существует классификация нервных клеток, согласно которой в коре большого мозга нейроны делятся на три основных типа (по своей форме): пирамидные, звездчатые и веретеновидные; встречаются и переходные формы. Эти типы нервных клеток коры можно определить на препаратах, окрашенных методом Ниссля, не позволяющим, однако, выявить дендриты, аксоны и их разветвления. Для выявления этих деталей необходимо применять метод Гольджи.

Пирамидные нейроны в коре имеют различную величину. Они встречаются во всех слоях коры. Наиболее крупные пирамидные нейроны находятся в слое IV зрительной области коры и в слоях III и V других корковых зон. Особо крупные пирамидные нейроны – нейроны Беца (по имени В.А. Беца, впервые их описавшего) обнаружены в области коркового конца двигательного анализатора. В отдельных областях коры пирамидные нейроны особенно богато представлены в слое III; в местах деления этого слоя на три подслоя наиболее крупные пирамидные нейроны находят в третьем подслое. Они, как правило, имеют верхушечный (аликальный) дендрит со значительным разветвлением, направленный к поверхности коры. В большинстве случаев верхушечные дендриты доходят до слоя I коры, где и разветвляются в горизонтальном направлении. От основания пирамидного нейрона в горизонтальном направлении отходят базальные и боковые дендриты, также постепенно дающие разветвления различной длины. Единственный длинный аксон, отходящий от пирамидного нейрона, направляется вниз в белое вещество и дает разветвленные по разным направлениям коллатерали. Иногда его ответвления образуют дугу и направляются к поверхности коры, давая по пути отростки, образующие межнейронные связи.

Звездчатые и веретеновидные нейроны

Весьма многообразны звездчатые клетки коры больших полушарий, особенно у человека. Система звездчатых нейронов с богатейшими разветвлениями дендритов в фило- и онтогенезе прогрессивно возрастает и усложняется в корковых концах анализаторов. Нейроны этого типа составляют значительную часть всех клеточных элементов коры больших полушарий мозга человека. Весьма разнообразны и богаты разветвлениями их дендритные и аксонные окончания, особенно в верхних слоях коры, т.е. в филогенетически наиболее новых образованиях. Аксоны звездчатых нейронов, в отличие от аксонов пирамидных и веретеновидных клеток, как правило, не выходят за пределы коры больших полушарий, а зачастую и за пределы одного слоя. В коре больших полушарий наблюдаются значительные различия в сложности форм и многообразии дендритных и аксонных разветвлений звездчатых нейронов: особенно многообразны межнейронные связи.

Если пирамидные и звездчатые клетки встречаются почти во всех слоях коры больших полушарий, то так называемые веретеновидные нейроны характерны в основном для VI-VII слоев коры. Однако веретеновидные нейроны нередко встречаются и в V слое. Наиболее характерной особенностью веретеновидных нейронов является наличие у них двух дендритов, направленных в противоположные стороны. Часто наряду с этими основными дендритами и их разветвлениями от тела веретеновидных клеток отходит еще боковой дендрит, идущий в горизонтальном направлении. Дендриты веретеновидных клеток обычно образуют немного разветвлений. Разветвления аксонов веретеновидных клеток также весьма незначительны по сравнению с разветвлениями звездчатых и пирамидных нейронов. Верхушечный дендрит веретеновидной клетки, поднимаясь вверх, может дойти до I слоя, однако в большинстве своем эти дендриты оканчиваются в слоях V, IV и III.

Нейрон (от греч. neuron - нерв) - это структурно-функциональная единица нервной системы. Эта клетка имеет сложное строение, высоко специализирована и по структуре содержит ядро, тело клетки и отростки. В организме человека насчитывается более 100 миллиардов нейронов.

Функции нейронов Как и другие клетки, нейроны должны обеспечивать поддержание собственной структуры и функций, приспосабливаться к изменяющимся условиям и оказывать регулирующее влияние на соседние клетки. Однако основная функция нейронов - это переработка информации: получение, проведение и передача другим клеткам. Получение информации происходит через синапсы с рецепторами сенсорных органов или другими нейронами, или непосредственно из внешней среды с помощью специализированных дендритов. Проведение информации происходит по аксонам, передача - через синапсы.

Строение нейрона

Тело клетки Тело нервной клетки состоит из протоплазмы (цитоплазмы и ядра), снаружи ограничена мембраной из двойного слоя липидов (билипидный слой). Липиды состоят из гидрофильных головок и гидрофобных хвостов, расположены гидрофобными хвостами друг к другу, образуя гидрофобный слой, который пропускает только жирорастворимые вещества (напр. кислород и углекислый газ). На мембране находятся белки: на поверхности (в форме глобул), на которых можно наблюдать наросты полисахаридов (гликокаликс), благодаря которым клетка воспринимает внешнее раздражение, и интегральные белки, пронизывающие мембрану насквозь, в них находятся ионные каналы.

Нейрон состоит из тела диаметром от 3 до 100 мкм, содержащего ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый ЭПР с активными рибосомами, аппарат Гольджи), а также из отростков. Выделяют два вида отростков: дендриты и аксон. Нейрон имеет развитый цитоскелет, проникающий в его отростки. Цитоскелет поддерживает форму клетки, его нити служат «рельсами» для транспорта органелл и упакованных в мембранные пузырьки веществ (например, нейромедиаторов). В теле нейрона выявляется развитый синтетический аппарат, гранулярная ЭПС нейрона окрашивается базофильно и известна под названием «тигроид». Тигроид проникает в начальные отделы дендритов, но располагается на заметном расстоянии от начала аксона, что служит гистологическим признаком аксона. Различается антероградный (от тела) и ретроградный (к телу) аксонный транспорт.

Дендриты и аксон

Аксон - обычно длинный отросток, приспособленный для проведения возбуждения от тела нейрона. Дендриты - как правило, короткие и сильно разветвлённые отростки, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов). Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи со многими (до 20-и тысяч) другими нейронами. Дендриты делятся дихотомически, аксоны же дают коллатерали. В узлах ветвления обычно сосредоточены митохондрии. Дендриты не имеют миелиновой оболочки, аксоны же могут её иметь. Местом генерации возбуждения у большинства нейронов является аксонный холмик - образование в месте отхождения аксона от тела. У всех нейронов эта зона называется триггерной.

Синапс Синапс - место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. Одни синапсы вызывают деполяризацию нейрона, другие - гиперполяризацию; первые являются возбуждающими, вторые - тормозящими. Обычно для возбуждения нейрона необходимо раздражение от нескольких возбуждающих синапсов.

Структурная классификация нейронов

На основании числа и расположения дендритов и аксона нейроны делятся на безаксонные, униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные (много дендритных стволов, обычно эфферентные) нейроны.

  • Безаксонные нейроны - небольшие клетки, сгруппированы вблизи спинного мозга в межпозвоночных ганглиях, не имеющие анатомических признаков разделения отростков на дендриты и аксоны. Все отростки у клетки очень похожи. Функциональное назначение безаксонных нейронов слабо изучено.
  • Униполярные нейроны - нейроны с одним отростком, присутствуют, например в сенсорном ядре тройничного нерва в среднем мозге.
  • Биполярные нейроны - нейроны, имеющие один аксон и один дендрит, расположенные в специализированных сенсорных органах - сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях;
  • Мультиполярные нейроны - Нейроны с одним аксоном и несколькими дендритами. Данный вид нервных клеток преобладает в центральной нервной системе
  • Псевдоуниполярные нейроны - являются уникальными в своём роде. От тела отходит один отросток, который сразу же Т-образно делится. Весь этот единый тракт покрыт миелиновой оболочкой и структурно представляет собой аксон, хотя по одной из ветвей возбуждение идёт не от, а к телу нейрона. Структурно дендритами являются разветвления на конце этого (периферического) отростка. Триггерной зоной является начало этого разветвления (т. е. находится вне тела клетки). Такие нейроны встречаются в спинальных ганглиях.

Функциональная классификация нейронов По положению в рефлекторной дуге различают афферентные нейроны (чувствительные нейроны), эфферентные нейроны (часть из них называется двигательными нейронами, иногда это не очень точное название распространяется на всю группу эфферентов) и интернейроны (вставочные нейроны).

Афферентные нейроны (чувствительный, сенсорный или рецепторный). К нейронам данного типа относятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.

Эфферентные нейроны (эффекторный, двигательный или моторный). К нейронам данного типа относятся конечные нейроны - ультиматные и предпоследние - неультиматные.

Ассоциативные нейроны (вставочные или интернейроны) - эта группа нейронов осуществляет связь между эфферентными и афферентными, их делят на комиссуральные и проекционные (головной мозг).

Морфологическая классификация нейронов Морфологическое строение нейронов многообразно. В связи с этим при классификации нейронов применяют несколько принципов:

  1. учитывают размеры и форму тела нейрона,
  2. количество и характер ветвления отростков,
  3. длину нейрона и наличие специализированные оболочки.

По форме клетки, нейроны могут быть сферическими, зернистыми, звездчатыми, пирамидными, грушевидными, веретеновидными, неправильными и т. д. Размер тела нейрона варьирует от 5 мкм у малых зернистых клеток до 120-150 мкм у гигантских пирамидных нейронов. Длина нейрона у человека составляет от 150 мкм до 120 см. По количеству отростков выделяют следующие морфологические типы нейронов: - униполярные (с одним отростком) нейроциты, присутствующие, например, в сенсорном ядре тройничного нерва в среднем мозге; - псевдоуниполярные клетки, сгруппированные вблизи спинного мозга в межпозвоночных ганглиях; - биполярные нейроны (имеют один аксон и один дендрит), расположенные в специализированных сенсорных органах - сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях; - мультиполярные нейроны (имеют один аксон и несколько дендритов), преобладающие в ЦНС.

Развитие и рост нейрона Нейрон развивается из небольшой клетки - предшественницы, которая перестаёт делиться ещё до того, как выпустит свои отростки. (Однако, вопрос о делении нейронов в настоящее время остаётся дискуссионным.) Как правило, первым начинает расти аксон, а дендриты образуются позже. На конце развивающегося отростка нервной клетки появляется утолщение неправильной формы, которое, видимо, и прокладывает путь через окружающую ткань. Это утолщение называется конусом роста нервной клетки. Он состоит из уплощенной части отростка нервной клетки с множеством тонких шипиков. Микрошипики имеют толщину от 0,1 до 0,2 мкм и могут достигать 50 мкм в длину, широкая и плоская область конуса роста имеет ширину и длину около 5 мкм, хотя форма её может изменяться. Промежутки между микрошипиками конуса роста покрыты складчатой мембраной. Микрошипики находятся в постоянном движении - некоторые втягиваются в конус роста, другие удлиняются, отклоняются в разные стороны, прикасаются к субстрату и могут прилипать к нему. Конус роста заполнен мелкими, иногда соединёнными друг с другом, мембранными пузырьками неправильной формы. Непосредственно под складчатыми участками мембраны и в шипиках находится плотная масса перепутанных актиновых филаментов. Конус роста содержит также митохондрии, микротрубочки и нейрофиламенты, имеющиеся в теле нейрона. Вероятно, микротрубочки и нейрофиламенты удлиняются главным образом за счёт добавления вновь синтезированных субъединиц у основания отростка нейрона. Они продвигаются со скоростью около миллиметра в сутки, что соответствует скорости медленного аксонного транспорта в зрелом нейроне.

Поскольку примерно такова и средняя скорость продвижения конуса роста, возможно, что во время роста отростка нейрона в его дальнем конце не происходит ни сборки, ни разрушения микротрубочек и нейрофиламентов. Новый мембранный материал добавляется, видимо, у окончания. Конус роста - это область быстрого экзоцитоза и эндоцитоза, о чём свидетельствует множество находящихся здесь пузырьков. Мелкие мембранные пузырьки переносятся по отростку нейрона от тела клетки к конусу роста с потоком быстрого аксонного транспорта. Мембранный материал, видимо, синтезируется в теле нейрона, переносится к конусу роста в виде пузырьков и включается здесь в плазматическую мембрану путём экзоцитоза, удлиняя таким образом отросток нервной клетки. Росту аксонов и дендритов обычно предшествует фаза миграции нейронов, когда незрелые нейроны расселяются и находят себе постоянное место.

 

Возможно, будет полезно почитать: