Транспорт холестерола и его эфиров в организме. Хороший, плохой, злой холестерин

Эндогенный путь начинается с того, что липопротеины очень низкой плотности (ЛОНП) высвобождаются из печени в кровоток. Хотя основным липидным компонентом ЛОНП являются триглицериды, содержащие мало холестерина, основная часть холестерина поступает из печени в кровь именно в составе ЛОНП.

Экзогенный путь: в желудочно-кишечном тракте пищевые жиры включаются в хиломикроны и через лимфатическую систему попадают в циркулирующую кровь. Свободные жирные кислоты (СЖК) поглощаются периферическими клетками (например, жировой и мышечной тканью); остатки (ремнанты) липопротеинов возвращаются в печень, где их холестериновая составляющая может транспортироваться обратно в ЖК тракт или использоваться в других метаболических процессах. Эндогенный путь: в печени синтезируются и поступают в кровь богатые триглицеридами липопротеины очень низкой плотности (ЛОНП), и их СЖК поглощаются и накапливаются в периферических жировых клетках и мышцах. Образующиеся в результате липопротеины промежуточной плотности (ЛПП) превращаются в липопротеины низкой плотности, основной циркулирующий липопротеин, осуществляющий транспорт холестерина. Большая часть ЛНП захватывается печенью и другими периферическими клетками путем рецептор-опосредованного эндоцитоза. Обратный транспорт холестерина, освобождаемого периферическими клетками, осуществляется липопротеинами высокой плотности (ЛВП), которые превращаются в ЛПП под действием циркулирующей лецитинхолестеринацилтрансферазы (ЛХАТ) и, наконец, возвращаются в печень. (Модифицировано из Brown MS, Goldstein JL. The hyperlipoproteinemias and other disorders of lipid metabolism. In: Wilson JE, et al., eds. Harrisons principles of internal medicine. 12th ed. New York: McGraw Hill, 1991:1816.)

Липопротеинлипаза мышечных клеток и жировой ткани отщепляет от ЛОНП свободные жирные кислоты, которые проникают в клетки, а циркулирующий остаток липопротеина, называемый ремнантным липопротеином промежуточной плотности (ЛПП), содержит в основном эфиры холестерина. Дальнейшие преобразования, которым ЛПП подвергается в крови, ведут к появлению богатых холестерином частиц липопротеинов низкой плотности (ЛНП).

Считается, что холестерин, поступающий в кровь из периферических тканей, транспортируется липопротеинами высокой плотности (ЛВП) в печень, где он вновь включается в липопротеины или секретируется в желчь (путь, включающий ЛПП и ЛНП, называется обратным транспортом холестерина). Таким образом, ЛВП, видимо, играет защитную роль в отношении отложения липидов в атеросклеротических бляшках. В крупных эпидемиологических исследованиях уровень циркулирующего ЛВП обратно коррелирует с развитием атеросклероза. Поэтому ЛВП часто называют хорошим холестерином в противоположность плохому холестерину ЛНП.

(59) Протеинограмма: общий белок, белковые фракции

1) Фракция альфа -1- глобулинов Основными компонентами данной фракции являются альфа-1-антитрипсин, альфа -1- липопротеид, кислый альфа-1-гликопротеид. 2) Фракция альфа -2- глобулинов Эта фракция содержит альфа-2-макроглобулин, гаптоглобин, аполипопротеины А,В,С, церулоплазмин. 3) Фракция бета-глобулинов Бета фракция содержит трансферрин, гемопексин, компоненты комплимента, иммуноглобулины и липопротеиды. 4) Фракция гамма-глобулинов В состав этой группы входят иммуноглобулины M , G, A, D, E.

Показания к назначению анализа: 1. Острые и хронические инфекционные заболевания 2. Онкопатологии 3. Аутоиммунные патологии Повышение уровня: - альфа -1- глобулины. Наблюдается при острых, подострых и обострении хронических воспалительных процессов; поражении печени; всех процессах тканевого распада или клеточной пролиферации. - альфа -2- глобулины. Наблюдается при всех видах острых воспалительных процессов, особенно с выраженным экссудативным и гнойным характером (пневмония, эмпиема плевры и др.) ; заболеваниях, связанных с вовлечением в патологический процесс соединительной ткани (коллагенозы, ревматоидные заболевания); злокачественных новообразованиях; в стадии восстановления после термических ожогов; нефротическом синдроме - бета-глобулины. Выявляют при первичных и вторичных гиперлипопротеидемиях, заболеваниях печени, нефротическом синдроме, кровоточащей язве желудка, гипотиреозе. - гамма-глобулины. Гамма-глобулины повышены - такое состояние отмечается при реакции системы иммунитета, когда происходит выработка антител и аутоантител; при вирусных и бактериальных инфекциях, воспалении, коллагенозах, деструкции тканей и ожогах. Также повышение гаммаглобулинов сопровождает системную красную волчанку, хронический лимфолейкоз, эндотелиомы, остеосаркомы, кандидамикоз. Снижение уровня: - альфа -1- глобулины. Наблюдается при дефиците альфа-1-антитрипсина. - альфа -2- глобулины. Наблюдается при сахарном диабете, панкреатитах, врожденной желтухе новорожденных, токсических гепатитах. - бета-глобулины. Встречается редко и обычно обусловлено общим дефицитом белков плазмы. - гамма-глобулины. Уменьшение содержания гамма-глобулинов бывает первичным и вторичным. Различают три основных вида первичных гипогаммаглобулинемий: физиологическую (у детей в возрасте 3-5 мес.), врожденную и идиопатическую. Причинами вторичных гипогаммаглобулинемий могут быть многочисленные заболевания и состояния, приводящие к истощению иммунной системы. Анализы в лаборатории «ЛИТЕХ»: Метод исследования: колориметрический электрофорез Материал для исследования: сыворотка в одноразовой пластиковой пробирке с завинчивающейся крышкой. Хранить не более суток. Подготовка к исследованию: натощак

Разделение на фракции основано на разной подвижности белков в разделяющей среде под действием электрического поля

Парапротеинемия - появление на электрофореграмме дополнительной дискретной полосы, говорящей о присутствии в большом количестве однородного (моноклонального) белка - обычно иммуноглобулинов или отдельных компонентов их молекул, синтезирующихся в В-лимфоцитах.

Ультрацентрифугирование представляет собой метод, позволяющий получать однозначные результаты путем разделения липопротеинов в зависимости от их плотности. При ультрацентрифугировании происходит седиментация ЛПВП вместе с другими белками плазмы. Липопротеины низкой плотности обнаруживают тенденцию к флотации. Скорость флотации выражают в единицах Sf (флотация по Сведбергу). Чем выше соотношение липид: белок, тем ниже плотность липопротеина и тем выше число Sf. Электрофорез позволяет разделять липопротеины в зависимости от величины электрического заряда их апопротеинов. Этот метод более доступен, чем ультрацентрифугирование. Хотя в данной главе мы не пользуемся электрофоретической номенклатурой, она отражена в названиях ряда патологических состояний, которые будут рассмотрены ниже. Путем электрофореза липопротеины удается разделить на альфа (ЛПВП), бета (ЛПНП), пребета (ЛПОНП) и хиломикроновую фракции. В присутствии избытка ЛППП полоса, соответствующая бетафракции, может расширяться. Простая методика преципитации позволяет отделить ЛПВП от других липопротеинов, после чего можно дифференцировать холестерин, связанный с ЛПВП и с ЛПНП.

82 Холестерин может быть синтезирован в каждой эукариотической клетке, но преимущественно в печени. Протекает из ацетил-КоА,с участием ферментов ЭПР и гиалоплазмы. Состоит из 3 этапов:1)образование мемалоновой к-ты из ацетил КоА 2)синтез из мимолоновой к-ты активного изопрена с конденсацией его в скволен 3) превращение скволена в холестерин. ЛПВП собирают излишек холестерина из ткани, этерифицирует его и передает его ЛПОНП и хиломикронам (ХМ). Холестерин – переносчик непредельных жирных кислот. ЛПНП доставляет холестерин тканям и к нему имеют рецепторы все клетки организма. Синтез холестерина регулируется ферментом ГМГ-редуктазы. Весь выводимый холест. поступает в печень и экскретируется с желчью в виде холестерина, либо в виде солей желчных к-т, но большая часть желчи реабсорбируется из кишечно-печеночной регуляции. Клеточные рецепторы ЛПНП взаимодействуют с лигандом, после чего он захватывается клетку путем эндоцитоза и в лизосомах распадается, эфиры холестерина при этом гидролизуются. Свободный холестерин ингибирует ГМГ-КоА-редуктазу, синтез холестерина деново способствует образованию эфиров холестерина. При повышении концентрации холестерина уменьшается кол-во рецепторов ЛПНП. Концентрация холестерина в крови сильно зависит от наследственных и негативных факторов. Повышение уровня свободных и жирных кислот в плазме крови приводит к усилению секреции печени ЛПОНП и соответственно поступлению дополнительного кол-ва ТАГ и холестерина в кровоток. Факторы изм-я свободных жирных кислот: эмоциональный стресс, никотин, злоупотребление кофе, прием пищи с большими перерывами и в больших кол.

№83 Холестерин – переносчик непредельных жирных кислот. ЛПНП доставляет холестерин тканям и к нему имеют рецепторы все клетки организма. Синтез холестерина регулируется ферментом ГМГ-редуктазы. Весь холестерин, кот.выводится из организма поступает в печень и экскретируется с желчью либо в виде холестерина, либо в виде солей желчных к-т, но большая часть желчи. реабсорбируется из кишечно-печеночной регуляции. Желч. к-ты синтезир в печени из холестерола.



Первая реакция синтеза – образ. 7-а-гидроксилаза, ингибируется конечным продуктом желчн к-тами.и Послед р-ии синтеза приводят к формированию 2 видов желчн. к-т: холевой и хенодезоксихолевой. Коньюгирование – присоединение ионизированных молекул глицина или таурина к карбоксильной группе желчн. к-т. Коньюгеция происходит в Кл печени и начинается с образования активнформыцжелчн. к-т – производных КоА. затем рписоединяется таурин или глицин, в рез-те образ. 4 варианта коньюгатов: таурохолевая или гликохенодезоксихолевая, гликохолевая к-ты. Желчнокаменная болезнь – паталогический процесс при котором в желчном пузыре образуются камни, основу которых составляет холестерол. У большенства больных желчнокаменной болезнью активность ГМГ-КоА-редуктазы повышена, следовательно увеличен синтез холестерола, а активность 7-альфа-гидроксилазы снижены. В результате синтез холестерола увеличен, а синтез желчных к-т из него замедлен.если эти пропорции нарушены, то холестерол начинает осаждаться в желчном пузыре. образуя в начале вязкий осадок, кот. постеп-но становится более твердым.

Лечение желчнокаменной болезни . В начальной стадии образования камней можно применять в качестве лекарства хенодезоксихолиевую кислоту. Попадая в желчный пузырь, эта желчная к-та постепенно растворяет осадок холестерола

Билет 28

1.Особенности микросомального окисления, его биологическая роль. ЦитохромР 450

Микросомальное окисление. В мембран гладких ЭПС а также в митохондриях мембран некоторых органов есть окислительная система которая катализирует гидроксилирование большого числа разных субстратов. Эта окислительная система состоит из 2 цепей окислен НАДФ зависимого и НАД зависимого,НАДФ зависимая монооксидазная цепь состоит из вос-ого НАДФ,флавопротеида с коферментом ФАД и цитохрома Р450. НАД Н зависим цепь окисления содержит флавопротеид и цитохром В5. обе цепи могут обмениваться и при выделении эндоплазматического ретикулума из Кл мембран распад-ся на части, каждая из которых образует замкнутый пузырёк-микросому. ЦР450,как и все цитохромы относится к гемопротеидам,а белковая часть представлен одной полипептидной цепью,М=50тыс.способен образовывать комплекс с СО2 –имеет максимальное поглащение при 450нм.окисление ксенобиотиковосуществл с различ скоростью извест индукции и ингибиторы микросомальных систем окисления. Скорость окисления тех или иных в-в может ограничев-сяконкуренц за фермент комплекс микросом фракции. Так одновременное назначение 2 конкурирующ лек приводит к тому,что удаление одного из них может замед-ся и это приведёт к накоплению его в организме.Вдрслуч лек может индуцировать активацию сис-мы микросом оксидаз-ускорен устранение одновремен назначенных дрпр-ов.Индукторы микросом можно использовать и как лек ср-ва при необходимости активировать процессы обезвреживания эндоген метаболитов. Помимо реакций детоксикац ксенобиотиков система микросомального окисления может вызывать токсификацию исходно инертных в-в.

Цитохром Р450 – гемопротеин, содержит простетичесую группу – гем, и имеет участки связывания для О2 и субстрата (ксенобиотика). Молекулярный О2 в триплетном состоянии инертен и не способен взаимодействовать с орган соединениями. Чтобы сделать О2реакционоспособным необходимо его превратить в синглетный, используя ферментные системы его восстановления (моноксигеназная система).

2.Судьба холестерина в организме. .

ЛПВП собирают излишек холестерина из ткани, этерифицирует его и передает его ЛПОНП и хиломикронам (ХМ). Холестерин – переносчик непредельных жирных кислот. ЛПНП доставляет холестерин тканям и к нему имеют рецепторы все клетки организма. Синтез холестерина регулируется ферментом ГМГ-редуктазы. Весь холестерин, кот.выводится из организма поступает в печень и экскретируется с желчью либо в виде холестерина, либо в виде солей желчных к-т, но большая часть желчи. реабсорбируется из кишечно-печеночной регуляции. Желч. к-ты синтезир в печени из холестерола. В орг-ме за сутки синтезируется200-600 мг желчн. к-т. Первая реакция синтеза – образ. 7-а-гидроксилаза, ингибируется конечным продуктом желчн к-тами.и Послед р-ии синтеза приводят к формированию 2 видов желчн. к-т: холевой и хенодезоксихолевой. Коньюгирование – присоединение ионизированных молекул глицина или таурина к карбоксильной группе желчн. к-т. Коньюгеция происходит в Кл печени и начинается с образования активнформыцжелчн. к-т – производных КоА. затем рписоединяется таурин или глицин, в рез-те образ. 4 варианта коньюгатов: таурохолевая или гликохенодезоксихолевая, гликохолевая к-ты. Желчнокаменная болезнь – паталогический процесс при котором в желчном пузыре образуются камни, основу которых составляет холестерол. У большенства больных желчнокаменной болезнью активность ГМГ-КоА-редуктазы повышена, следовательно увеличен синтез холестерола, а активность 7-альфа-гидроксилазы снижены. В результате синтез холестерола увеличен, а синтез желчных к-т из него замедлен.если эти пропорции нарушены, то холестерол начинает осаждаться в желчном пузыре. образуя в начале вязкий осадок, кот. постеп-но становится более твердым. Холестериновые камини обычно белого цвета, а смешанные камни – коричневого цвета разных оттенков. Лечение желчнокаменной болезни. В начальной стадии образования камней можно применять в качестве лекарства хенодезоксихолиевую кислоту. Попадая в желчный пузырь, эта желчная к-та постепенно растворяет осадок холестерола, однако это медленный процесс, требующий несколько месяцев.структурная основа холестерола не может быть расщеплена до СО2 и воды, поэтому осн. кол-во выводится только в виде желч. к-т. Некоторое кол-во желч. к-т выделяется в неизменном виде, я часть подвергается действию ферментов бактерий в кишечнике. Часть молекул холестерола в кишечнике под действием ферментов бактерий восстанавливается по двойной связи, образуя два типа молекул – холестанол, копростанол, выводимые с фекалиями. В сутки из организма выводится от 1 до 1,3 г холостерола. основная часть удаляется с фекалиями

В крови циркулирует 4 типа липопротеинов, различающихся содержанием в них холестерина, триглицеридов и апобелков. Они имеют разную относительную плотность и размеры. В зависимости от плотности и размеров различают следующие типы липопротеинов:

Хиломикроны - представляют собой богатые жиром частицы, поступающие в кровь из лимфы и транспортирующие пищевые триглецириды.

Они содержат около 2% апобелка, около 5% ХО, около 3% фосфолипидов и 90% триглицеридов. Хиломикроны являются самыми крупными липопротеиновыми частицами.

Хиломикроны синтезируются в эпителиальных клетках тонкой кишки, а их основная функция состоит в транспорте поступивших с пищей триглицеридов Триглецириды доставляются в жировую ткань, где они депонируются, и в мышцы, где используются в качестве источ н и ка э н ерги и.

Плазма крови здоровых людей, не принимавших пищу в течение 12-14 ч, хиломикронов не содержит или содержит ничтожное коли­чество.

Липопротеины низкой плотности (ЛПНП) - содержат около 25% апобелка, около 55% холестерина, около 10% фосфолипи­дов и 8-10% триглицеридов. ЛПНП - это ЛПОПН после того, как они доставят триглицериды в жировые и мышечные клетки. Они являются основными переносчиками синтезированного в организме холестерина ко всем тканям (рис. 5-7). Основной белок ЛПНП - апопротеин В (апоВ). Так как ЛПНП поставляют холес­терин, синтезированный в печени, в ткани и органы и тем самым способствуют развитию атеросклероза, то их называют атероген- ными липопротеинами.

гощаютея холестерином (рис. 5-8). Основной белок ЛПВГТ - апоп- ротеин А (апоА). Основная функция ЛПВП состоит в связывании и транспортировке излишка холестерина из всех непеченочных клеток обратно в печено для дальнейшего выделения в составе желчи. В связи со способностью связывать и удалять холестерин ЛПВП назы­вают антиатерогенными (препятствуют развитию атеросклероза).

Липопротеины низкой плотности (ЛПНП)

Фосфолипид ■ Холестериновый

Триглицерид

Незстерифи-

цированный

холестерин

Апопротеин В

Рис. 5-7. Строение ЛПНП

Апопротеин А

Рис. 5-8. Строение ЛПВП

Атерогенность холестерина в первую очередь определяется его принадлежностью к тому или иному классу липопротеинов. В этой связи особо следует выделить ЛПНП, которые наиболее атерогенны в силу следующих причин.

ЛПНП транспортируют около 70% всего холестерина плазмы и являются частицами, наиболее богатыми холестерином, содержание которого в них может достигать до 45-50%. Размеры частиц (диаметр 21-25 нм) позволяет ЛПНП наряду с ЛНВП проникать в стенку сосуда через эндотелиальный барьер, но, в отличие от ЛПВП, которые легко выводятся из стенки, способствуя выведению избытка холестерина, ЛПНП задерживаются в ней, поскольку обладают избирательным сродством к ее структурным компонентам. Последнее объясняется, с одной стороны, наличием в составе ЛПНП апоВ, а с другой - сущес­твованием на поверхности клеток стенки сосуда рецепторов к этому апопротеину. В силу указанных причин ЛППП являются основной транспортной формой холестерина для н\жд клеток сосудистой стен­ки, а при патологических условиях - источником накопления его в стенке сосуда. Именно поэтому при гиперлипопротеинемии, характе­ризующейся высоким уровнем холестерина ЛПНП, часто наблюдают­ся относительно ранний и резко выраженный атеросклероз и ИБС

Холестерол транспортируется кровью только в составе ЛП. ЛП обеспечивают поступление в ткани экзогенного холестерола, определяют потоки холестерола между органами и выведение избытка холестерола из организма.

Транспорт экзогенного холестерола. Холестерол поступает с пищей в количестве 300-500 мг/сут, в основном в виде эфиров. После гидролиза, всасывания в составе мицелл, этерификации в клетках слизистой оболочки кишечника эфиры холестерола и небольшое количество свободного холестерола включаются в состав ХМ и поступают в кровь. После удаления жиров из ХМ под действием ЛП-липазы холестерол в составе остаточных ХМ доставляется в печень. Остаточные ХМ взаимодействуют с рецепторами клеток печени и захватываются по механизму эндоцитоза. Затем ферменты лизосом гидролизуют компоненты остаточных ХМ, и в результате образуется свободный холестерол. Экзогенный холестерол, поступающий таким образом в клетки печени, может ингибировать синтез эндогенного холестерола, замедляя скорость синтеза ГМГ-КоА-редуктазы.

Транспорт эндогенного холестерола в составе ЛПОНП (пре-β-липопротеинов). Печень - основное место синтеза холестерола. Эндогенный холестерол, синтезированный из исходного субстрата ацетил-КоА, и экзогенный, поступивший в составе остаточных ХМ, образуют в печени общий фонд холестерола. В гепатоцитах триацилглицеролы и холестерол упаковываются в ЛПОНП. В их состав входят, кроме того, апопротеин В-100 и фоефолипиды. ЛПОНП сек-ретируются в кровь, где получают от ЛПВП апопротеины Е и С-IIВ крови на ЛПОНП действует ЛП-липаза, которая, как и в ХМ, активируется апоС-II гидролизует жиры до глицерола и жирных кислот. По мере уменьшения количества ТАГ в составе ЛПОНП они превращаются в ЛППП. Когда количество жиров в ЛППП уменьшается, апопротеины С-II реносятся обратно на ЛПВП. Содержание холестерола и его эфиров в ЛППП достигает 45%; часть этих липопротеинов захватывается клетками печени через рецепторы ЛПНП, которые взаимодействуют и с апоЕ и с апоВ-100.

Транспорт холестерола в составе ЛПНП. Рецепторы ЛПНП. На ЛППП, оставшиеся в крови, продолжает действовать ЛП-липаза, и они превращаются в ЛПНП, содержащие до 55% холестерола и его эфиров. Апопротеины Е и С-II реносятся обратно в ЛПВП. Поэтому основным апопротеином в ЛПНП служит апоВ-100. Апопротеин В-100 взаимодействует с рецепторами ЛПНП и таким образом определяет дальнейший путь холестерола. ЛПНП - основная транспортная форма холестерола, в которой он доставляется в ткани. Около 70% холестерола и его эфиров в крови находится в составе ЛПНП. Из крови ЛПНП поступают в печень (до 75%) и другие ткани, которые имеют на своей поверхности рецепторы ЛПНП. Рецептор ЛПНП - сложный белок, состоящий из 5 доменов и содержащий углеводную часть. Рецепторы ЛПНП синтезируются в ЭР и аппарате Гольджи, а затем экспонируются на поверхности клетки, в специальных углублениях, выстланных белком клатрином. Эти углубления называют окаймлёнными ямками. Выступающий на поверхность N-концевой домен рецептора взаимодействует с белками апоВ-100 и апоЕ; поэтому он может связывать не только ЛПНП, но и ЛППП, ЛПОНП, остаточные ХМ, содержащие эти апопротеины. Клетки тканей содержат большое количество рецепторов ЛПНП на своей поверхности: например, на одной клетке фибробласта имеется от 20 000 до 50 000 рецепторов. Из этого следует, что холестерол поступает в клетки из крови в основном в составе ЛПНП. Если количество холестерола, поступающего в клетку, превышает её потребность, то синтез рецепторов ЛПНП подавляется, что уменьшает поток холестерола из крови в клетки. При снижении концентрации свободного холестерола в клетке, наоборот, активируется синтез ГМГ-КоА-редуктазы и рецепторов ЛПНП. В регуляции синтеза рецепторов ЛПНП участвуют гормоны: инсулин и трийодтиронин (Т 3), полрвые гормоны. Они увеличивают образование рецепторов ЛПНП, а глюкокортикоиды (в основном кортизол) уменьшают. Эффекты инсулина и Т 3 , вероятно, могут объяснить механизм гиперхолестеролемии и увеличение риска атеросклероза при сахарном диабете или гипотиреозе.

Роль ЛПВП в обмене холестерола. ЛПВП выполняют 2 основные функции: они поставляют апопротеины другим ЛП в крови и участвуют в так называемом "обратном транспорте холестерола". ЛПВП синтезируются в печени и в небольшом количестве в тонком кишечнике в виде "незрелых липопротеинов" - предшественников ЛПВП. Они имеют дисковидную форму, небольшой размер и содержат высокий процент белков и фосфолипидов. В печени в ЛПВП включаются апопротеины А, Е, С-II, фермент ЛХАТ. В крови апоС-II и апоЕ переносятся с ЛПВП на ХМ и ЛПОНП. Предшественники ЛПВП пракгически не содержат холестерола и ТАГ и в крови обогащаются холестеролом, получая его из других ЛП и мембран клеток. Для переноса холестерола в ЛПВП существует сложный механизм. На поверхности ЛПВП находится фермент ЛХАТ - лецитишхолестерол-ацилтрансфераза. Этот фермент превращает холестерол, имеющий гидроксильную группу, выступающую на поверхность липопротеинов или мембран клеток, в эфиры холестерола. Радикал жирной кислоты переносится от фосфатидилхолита (лецитина) на гидроксильную группу холестерола. Реакция активируется апопротеином A-I, входящим в состав ЛПВП. Гидрофобная молекула, эфира холестерола перемещается внутрь ЛПВП. Таким образом, частицы ЛПВП обогащаются эфирами холестерола. ЛПВП увеличиваются в размерах, из дисковидных небольших частиц превращаются в частицы сферической формы, которые называют ЛПВП 3 , или "зрелые ЛПВП". ЛПВП 3 частично обменивают эфиры холестерола на триацилглицеролы, содержащиеся в ЛПОНП, ЛППП и ХМ. В этом переносе участвует "белок, переносящий эфиры холестерина" (он также называется aпoD). Таким образом, часть эфиров холестерола переносится на ЛПОНП, ЛППП, а ЛПВП 3 за счёт накопления триацилглицеролов увеличиваются в размерах и превращаются в ЛПВП 2 . ЛПОНП под действием ЛП-липазы превращаются сначала в ЛППП, а затем в ЛПНП. ЛПНП и ЛППП захватываются клетками через рецепторы ЛПНП. Таким образом, холестерол из всех тканей возвращается в печень в основном в составе ЛПНП, но в этом участвуют также ЛППП и ЛПВП 2 . Практически весь холестерол, который должен быть выведен из организма, поступает в печень и уже из этого органа выделяется в виде производных с фекалиями. Путь возвращения холестерола в печень называют "обратным транспортом" холестерола.

37. Превращение холестерина в желчные кислоты, выведение из ор­ганизма холестерина и желчных кислот.

Жёлчные кислоты синтезируются в печени из холестерола. Часть жёлчных кислот в печени подвергается реакции конъюгации - соединения с гидрофильными молекулами (глицином и таурином). Жёлчные кислоты обеспечивают эмульгирование жиров, всасывание продуктов их переваривания и некоторых гидрофобных веществ, поступающих с пищей, например жирорастворимых витаминов и холестерола. Жёлчные кислоты также всасываются, через юротную вену попадают опять в печень и многократно используются для эмульгирования жиров. Этот путь называют энтерогепатической циркуляцией жёлчных кислот.

Синтез жёлчных кислот. В организме за сутки синтезируется 200- 600 мг жёлчных кислот. Первая реакция синтеза – образование 7-α-гидроксихолестерола - является регуляторной. Фермент 7-α-гидроксилаза, катализирующий эту реакцию, ингибируется конечным продуктом - жёлчными кислотами. 7-α-Гидроксилаза представляет собой одну из форм цитохрома Р 450 и использует кислород как один из субстратов. Один атом кислорода из О 2 включается в гидроксильную группу в положении 7, а другой восстанавливается до воды. Последующие реакции синтеза приводят к формированию 2 видов жёлчных кислот: холевой и хенодезоксихолевой, которые называют "первичными жёлчными кислотами".

Выведение холестерола из организма. Структурная основа холестерола - кольца циклопентанпергидрофенантрена - не может быть расщеплена до СО 2 и воды, как другие органические компоненты, поступающие с пищей или синтезированные в организме. Поэтому основное количество холестерола выводится в виде жёлчных кислот.

Некоторое количество жёлчных кислот выделяется в неизменённом виде, а часть подвергается действию ферментов бактерий в кишечнике. Продукты их разрушения (в основном, вторичные жёлчные кислоты) выводятся из организма.

Часть молекул холестерола в кишечнике под действием ферментов бактерий восстанавливается по двойной связи в кольце В, в результате чего образуютря 2 типа молекул - холестанол и копростанол, выводимые с фекалиями. В сутки из организма выводится от 1,0 г до 1,3 г холестерола, основная часть удаляется с фекалиями,


Похожая информация.


(рис.10). Основ-ное место синтеза - печень (до 80%), меньше синтезируется в кишечнике, коже и других тканях. С пищей поступает около 0,4 г холестерина, его источником является только пища животного происхождения. Холестерин необходим для построения всех мембран, в печени из него синтезируются желчные кислоты , в эндокринных железах - стероидные гормоны , в коже - витамин Д .

Рис.10 Холестерин

Сложный путь синтеза холестерина можно поделить на 3 этапа (рис.11). Первый этап заканчивается об-разованием мевалоновой кислоты. Источником для синтеза холестерина служит ацетил-КоА. Сна-чала из 3 молекул ацетил-КоА образуется ГМГ-КоА - общий предшественник в синтезе холесте-рина и кетоновых тел (однако реакции синтеза кетоновых тел происходят в митохондриях печени, а реакции синтеза холестерина - в цитозоле клеток). Затем ГМГ-КоА под действием ГМГ-КоА-редуктазы восстанавливается до мевалоновой кислоты с использованием 2 молекул НАДФН. Эта реакция является регуляторной в синтезе холестерина. Синтез холестерина тормозит сам холестерин, желчные кислоты и гормон голода глюкагон . Усиливается синтез холестерина при стрессе катехоламинами.

На втором этапе синтеза из 6 молекул мевалоновой кислоты образуется углеводород сквален, имеющий линейную структуру и состоящий из 30 атомов углерода.

На третьем этапе синтеза происходит циклизация углеводородной цепи и отщепление 3 атомов углерода, поэтому холестерин содержит 27 углеродных атомов. Холестерин является гидрофобной молекулой, поэтому транспортируется кровью только в составе разных липопротеинов .

Рис. 11 Синтез холестерина

Липопротеины - липид-белковые комплексы, предназначенные для транспорта нерастворимых в водных средах липидов по крови (рис.12). Снаружи липопротеины (ЛП) имеют гидрофильную оболочку, которая состоит из молекул белков и гидрофильных групп фосфолипидов. Внутри ЛП находятся гидрофобные части фосфолипидов, нерастворимые молекулы холестерина, его эфиров, молекулы жиров. ЛП делятся (по плотности и подвижности в электрическом поле) на 4 класса. Плотность ЛП определяется соотношением белков и липидов. Чем больше белка, тем больше плотность и тем меньше размер.

Рис.12. Строение липопротеидов

· 1 класс - хиломикроны (ХМ). Содержат 2% белка и 98% липидов , среди липидов преобладают экзогенные жиры, переносят экзогенные жиры от кишечника к органам и тканям, синтезируются в кишечнике, в крови присутствуют непостоянно - только после переваривания и всасывания жирной пищи.

· 2 класс - ЛП очень низкой плотности (ЛПОНП) или пре-b-ЛП. Белка в них 10%, липидов - 90%, среди липидов преобладают эндогенные жиры, транспортируют эндогенные жиры из печени в жировую ткань. Основное место синтеза - печень, небольшой вклад вносит тонкий кишечник.


· 3 класс - ЛП низкой плотности (ЛПНП) или b-ЛП. Белка в них 22% , липидов - 78%, среди липидов преобладает холестерин. Нагружают клетки холестерином, поэтому их на-зывают атерогенными, т.е. способствующими развитию атеросклероза (АС). Образуются непосредственно в плазме крови из ЛПОНП под действием фермента ЛП-липазы.

· 4 класс ЛП высокой плотности (ЛПВП) или a-ЛП. Белка и липидов содержат по 50%, среди липидов преобладают фосфолипиды и холестерин. Разгружают клетки от избытка холестерина, поэтому являются антиатерогенными, т.е. препятствующими развитию АС. Основное место их синтеза - печень, небольшой вклад вносит тонкий кишечник.

Транспорт холестерина липопротеинами.

Печень является основнымместом синтеза холестерина. Холестерин, синтезированный в печени, упаковывается в ЛПОНП и в их составе секрети-руется в кровь. В крови на них действует ЛП-липаза, под влиянием которой ЛПОНП переходят в ЛПНП. Таким образом, ЛПНП становятся основной транспортной формой холестерина, в которой он доставляется к тканям. ЛПНП могут попадать в клетки двумя путями: рецепторным и нерецепторным захватом. Большинство клеток на своей поверхности имеют рецепторы к ЛПНП. Образовавшийся комплекс рецептор-ЛПНП эндоцитозом попадает внутрь клетки, где распадается на рецептор и ЛПНП. Из ЛПНП при участии лизосомальных ферментов освобождается холестерин. Этот холестерин используется для обновления мембран, тормозит синтез холестерина данной клеткой, а также, если количество холестерина, поступающего в клетку, превышает ее потребность, то подавляется и синтез рецепторов к ЛПНП.

Это уменьшает поток холестерина из крови в клетки, таким образом, клетки, для которых характерен рецепторный захват ЛПНП, имеют механизм, который ограждает их от избытка холестерина. Для гладкомышечных клеток сосудов и макрофагов характерен нерецепторный захват ЛПНП из крови. В эти клетки ЛПНП, а значит, и холестерин попадают диффузно, то есть, чем их больше в крови, тем больше их попадает в эти клетки. Эти разновидности клеток не имеют механизма, который ограждал бы их от избытка холестерина. В «обратном транспорте холестерина» от клеток участвуют ЛПВП. Они забирают избыток холестерина из клеток и возвращают его обратно в печень. Холестерин выводится с калом в виде желчных кислот, часть холестерина в составе желчи попадает в кишечник и также выводится с калом.

 

Возможно, будет полезно почитать: