Почему в природе часто встречается золотое сечение? Проект "суть и применение золотого сечения в жизни человека" Шишка золотое сечение.

1. Введение

2. Золотое сечение

3. Числа Фобиначчи

4. Филотаксис

5. Принципы формообразования в природе

6. Заключение

7. Список используемой литературы


Введение

Человек различает окружающие его предметы по форме. Интерес к форме какого-либо предмета может быть продиктован жизненной необходимостью, а может быть вызван красотой формы. Форма, в основе построения которой лежат сочетание симметрии и золотого сечения, способствует наилучшему зрительному восприятию и появлению ощущения красоты и гармонии. Целое всегда состоит из частей, части разной величины находятся в определенном отношении друг к другу и к целому. Принцип золотого сечения – высшее проявление структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе.

О золотом сечении знали еще в древнем Египте и Вавилоне, в Индии и Китае. Великий Пифагор создал тайную школу, где изучалась мистическая суть «золотого сечения». Евклид применил его, создавая свою геометрию, а Фидий - свои бессмертные скульптуры. Платон рассказывал, что Вселенная устроена согласно «золотому сечению». А Аристотель нашел соответствие «золотого сечения» этическому закону. Высшую гармонию «золотого сечения» проповедовали Леонардо да Винчи и Микеланджело, ведь красота и «золотое сечение» - это одно и то же. Христианские мистики рисовали на стенах своих монастырей пентаграммы «золотого сечения», таким образом, спасаясь от Дьявола. При этом ученые - от Пачоли до Эйнштейна - искали, но так и не нашли его точного значения. Бесконечный ряд после запятой - 1,6180339887... Странная, загадочная, необъяснимая вещь: эта божественная пропорция мистическим образом сопутствует всему живому. Неживая природа не знает, что такое «золотое сечение». Но вы непременно увидите эту пропорцию и в изгибах морских раковин, и в форме цветов, и в облике жуков, и в красивом человеческом теле. Все живое и все красивое - все подчиняется божественному закону, имя которому - «золотое сечение».


Золотое Сечение

Золотое сечение (золотая пропорция) - пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему a: b = b: c или с: b = b: а.

Рис. 1. Геометрическое изображение золотой пропорции

Практическое знакомство с золотым сечением начинают с деления отрезка прямой в золотой пропорции с помощью циркуля и линейки.

Рис. 2. Деление отрезка прямой по золотому сечению. BC = 1/2 AB; CD = BC

Из точки В восставляется перпендикуляр, равный половине АВ. Полученная точка С соединяется линией с точкой А. На полученной линии откладывается отрезок ВС, заканчивающийся точкой D. Отрезок AD переносится на прямую АВ. Полученная при этом точка Е делит отрезок АВ в соотношении золотой пропорции.

Отрезки золотой пропорции выражаются бесконечной иррациональной дробью AE = 0,618..., если АВ принять за единицу, ВЕ = 0,382... Для практических целей часто используют приближенные значения 0,62 и 0,38. Если отрезок АВ принять за 100 частей, то большая часть отрезка равна 62, а меньшая – 38 частям.

Свойства золотого сечения описываются уравнением:

Одно из решений которого равно:

Второе решение называется основанием золотой пропорции и обозначается: φ

Число φ обладает уникальными математическими свойствами. Это единственное число, кроме нуля, удовлетворяющее рекуррентному соотношению:

В геометрии существуют различные способы построения золотой пропорции, причем характерно, что для построения достаточно взять самые простые геометрические фигуры – квадрат или прямоугольный треугольник с соотношением катетов 1:2. Если с середины стороны квадрата провести окружность радиусом, равным диагонали полуквадрата, то на ее пересечении с продолженной стороной квадрата получим отрезок, который меньше стороны квадрата в соответствии с золотой пропорцией. Еще проще построение золотой пропорции в прямоугольном треугольнике 1:2:

. Достаточно провести две дуги окружности, пересекающиеся в одной точке на гипотенузе, и большой катет будет разделен в соответствии с золотой пропорцией.

Золотое сечение можно увидеть и в пентаграмме - так называли греки звездчатый многоугольник. Он служит символом Пифагорейского союза – религиозной секты и научной школы по главе с Пифагором, которая проповедовала братскую любовь к друг другу, отречение от внешнего мира, общность имущества и т.д. На подобных устоях основывались очень многие секты. Но Пифагорийский союз отличало от других то, что пифагорейцы считали возможным добиться очищения духа при помощи математики. По их теории, в основу мирового порядка положены числа. Мир, считали они, состоит из противоположностей, а гармония приводит противоположности к единству. Гармония же заключается в числовых отношениях. Пифагорейцы приписывали числам различные свойства. Так, четные числа они называли женскими, нечетные (кроме 1) – мужскими. Число 5 – как сумма первого женского числа (2) и первого мужского (3) – считалось символом любви. Отсюда такое внимание к пентаграмме, имеющей 5 углов.

Благоговейное отношение к пентаграмме было характерно и для средневековых мистиков, которые многое заимствовали у пифагорейцев. В средние века считалось, что пентаграмма служит охранным знаком от сатаны. Вспомним, например, как описывает Гете проникновение дьявола Мефистофеля в келью доктора Фауста, на которой была начертана пентаграмма. Мефистофель сначала послал черного пуделя отгрызть кончик двери с частью пентаграммы. Только после этого он смог предстать перед Фаустом.

Интересно, что стороны пентаграммы, пресекаясь, образуют правильный пятиугольник, в котором пресечение диагоналей дает нам новую пентаграмму, а в пересечении ее сторон мы снова видим правильный пятиугольник, открывающий возможность построения новой пентаграммы. И так далее до бесконечности.

Золотой прямоугольник обладает многими необычными свойствами. Отрезав от него квадрат, сторона которого равна меньшей стороне прямоугольника, мы снова получим золотой прямоугольник меньших размеров. Продолжая отрезать квадраты, мы будем получать все меньшие и меньшие золотые прямоугольники (рис.3)

Рис. 3. Золотой прямоугольник

Тем самым будет построен пример совершенного квадрируемого прямоугольника бесконечного порядка. Точки, делящие стороны прямоугольников в среднем и крайнем отношении, лежат на логарифмической спирали, закручивающейся внутрь.

Полюс спирали лежит на пересечении пунктирных диагоналей. Разумеется, «вращающиеся квадраты», как их принято называть, могут не только закручивать, но и раскручивать спираль. Для этого лишь требуется строить не уменьшающиеся, а все увеличивающиеся квадраты. Логарифмическая спираль – единственный тип спирали, не меняющей своей формы при увеличении размеров. Если в логарифмической спирали из центра О провести прямую, то образующиеся отрезки ОА, ОВ, ОС, ОD и т. д., полученные при пересечении прямой с витками спирали, образуют геометрическую прогрессию, то есть ОА/ОВ=ОВ/ОС=ОС/OD=…= m, где m – постоянное число.

Отрезки радиуса, заключенного между последовательными витками спирали, также образуют прогрессию с отношением АВ/ВС=ВС/СD=…=n. Частным случаем спирали является такая, которая отвечает значению n, равному Ф, т. е. золотой пропорции. Такая спираль называется «кривой гармонического возрастания».

Согласно современным представлениям золотое деление – это асимметричная симметрия. В науку о симметрии вошли такие понятия, как статическая и динамическая симметрия. Статическая симметрия характеризует покой, равновесие, а динамическая – движение, рост. Так, в природе статическая симметрия представлена строением кристаллов, а в искусстве характеризует покой, равновесие и неподвижность. Динамическая симметрия выражает активность, характеризует движение, развитие, ритм, она – свидетельство жизни. Статической симметрии свойственны равные отрезки, равные величины. Динамической симметрии свойственно увеличение отрезков или их уменьшение, и оно выражается в величинах золотого сечения возрастающего или убывающего ряда.

Числа Фобиначчи

В математике хорошо известна последовательность чисел 1,1,2,3,5,8,13,21,..., называемая числами Фибоначчи (ряд Фибоначчи) и образуемая по рекуррентной формуле:

где n - натуральное число и начальные члены равны 1 и 1.

Особенность последовательности чисел состоит в том, что каждый ее член, начиная с третьего, равен сумме двух предыдущих 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13, 8 + 13 = 21; 13 + 21 = 34 и т.д., а отношение смежных чисел ряда приближается к отношению золотого деления. Так, 21: 34 = 0,617, а 34: 55 = 0,618. Это отношение обозначается символом Ф. Только это отношение - 0,618: 0,382 - дает непрерывное деление отрезка прямой в золотой пропорции, увеличение его или уменьшение до бесконечности, когда меньший отрезок так относится к большему, как больший ко всему.

Человечество за всю историю открыло несколько уникальных закономерностей, которые нашли широкое применение в самых разнообразных областях. Одна из них – золотое сечение.

Оно описывает разделение объекта на 2 части в том соотношении, в котором меньшая часть относится к большей, так же как большая часть относится к полному размеру объекта. В качестве примера этого запутанного определения можно привести деление прямоугольного листа: отрезая от полного листочка меньший прямоугольник, у последнего окажется то же соотношение сторон, что и у большого. Еще один пример – звезда с пятью концами: в этой геометрической фигуре каждый отрезок, соединяющий её лучи, разделяется по данному правилу пересекающим его отрезком.

Как появилось правило золотого сечения?

История возникновения уходит в далекое прошлое. Его описывал в труде «Начала» древний ученый и мыслитель Евклид, это первые документальные упоминания. Древнегреческий математик не единственный, кто заметил и активно использовал правило. Значительно позже его применял и Леонардо да Винчи, называя «божественной пропорцией», и Мартин Ом. Последний в 1835 году ввел в обиход этот термин.

Где можно встретить?

Золотое сечение в природе можно заметить у растений: они при росте сохраняют заданные пропорции. А немецкий ученый Цейзинг установил, что деление человеческого тела в точке пупка также соответствует данному правилу. Отмечено явление и в следующих областях:

  • архитектура – египетские пирамиды, построенные много веков назад;
  • музыка – произведения Моцарта и Бетховена;
  • скульптура – пропорции многих сооружений из камня строятся в соответствии с правилом;
  • живопись – художник Василий Суриков отмечал, что в написании картин существует закон о том, что в работу ничего нельзя ни добавить, ни убрать (используются те же самые математические принципы).

Сфера использования достаточно обширна, некоторым свойственно видеть его даже в бытовых мелочах, что, конечно, является сильным преувеличением. Тем не менее, правило, открытое еще в древние века, активно используется и в наши дни.

Золотое сечение – это простой принцип, который поможет сделать дизайн приятным для визуального восприятия. В этой статье мы подробно расскажем как и зачем его использовать.

Распространенная в природе математическая пропорция, называемая Золотое сечение, или Золотая середина, основана на Последовательности Фибоначчи (о которой вы, скорее всего, слышали в школе, или читали в книге Дэна Брауна «Код да Винчи»), и подразумевает под собой соотношение сторон 1:1,61.

Такое соотношение сплошь и рядом встречается в нашей жизни (ракушки, ананасы, цветы и т.д.) и поэтому воспринимается человеком как нечто естественное, приятное взгляду.

→ Золотое сечение это взаимосвязь между двумя числами в последовательности Фибоначчи
→ Построение этой последовательности в масштабе дает спирали, которые можно увидеть в природе.

Считается, что Золотое сечение используется человечеством в искусстве и дизайне уже более 4 тысяч лет, а возможно даже больше, если верить ученым, которые утверждают, что древние Египтяне использовали этот принцип при строительстве пирамид.

Знаменитые примеры

Как мы уже говорили, Золотое сечение можно видеть на протяжении всей истории искусства и архитектуры. Вот некоторые примеры, которые только подтверждают обоснованность использования этого принципа:

Архитектура: Парфенон

В древнегреческой архитектуре Золотое сечение использовалось для вычисления идеальной пропорции между высотой и шириной здания, размеров портика, и даже расстояния между колоннами. В дальнейшем, этот принцип был унаследован архитектурой неоклассицизма.

Искусство: Тайная вечеря

Для художников композиция – основа основ. Леонардо да Винчи, как и многие другие художники, руководствовался принципом Золотого сечения: в Тайной Вечере, к примеру, фигуры учеников расположены в нижних двух третях (большее из двух частей Золотого сечения), а Иисус помещен строго по центру между двумя прямоугольниками.

Веб-дизайн: редизайн Twitter в 2010

Креативный директор Twitter Дуг Боуман (Doug Bowman) опубликовал скриншот в своем аккаунте Flickr, объясняя использование принципа Золотого сечения для редизайна 2010 года. «Все, кто интересуется #NewTwitter пропорциями – знайте, все сделано не просто так», сказал он.

Apple iCloud

Иконка сервиса iCloud тоже совсем не случайный набросок. Как объяснил Такамаса Мацумото в своем блоге (оригинальная японская версия ) все построено на математике Золотого сечения, анатомию которого можно увидеть на рисунке справа.

Как построить Золотое сечение?

Построение происходит довольно просто, и начинается с основного квадрата:

Нарисуйте квадрат. Это сформирует длину “короткой стороны” прямоугольника.

Разделите квадрат пополам вертикальной линией так, чтобы получились два прямоугольника.

В одном прямоугольнике нарисуйте линию, объединив противоположные углы.

Разверните эту линию горизонтально так, как это показано на рисунке.

Создайте еще один прямоугольник, используя горизонтальную линию, которую вы рисовали в предыдущих шагах как основу. Готово!

«Золотые» инструменты

Если чертить и вымерять не ваше любимое занятие, предоставьте всю «черную работу» инструментам, которые разработаны специально для этого. С помощью представленных ниже 4-х редакторов вы легко найдете Золотое сечение!

Приложение GoldenRATIO помогает разрабатывать веб-сайты, интерфейсы и макеты в соответствии с Золотым Сечением. Оно доступно в Mac App Store за $ 2,99, и имеет встроенный калькулятор с визуальной обратной связью, и удобную функцию «Избранное», в которой хранятся настройки для повторяющихся задач. Совместимо с Adobe Photoshop.

Этот калькулятор, который поможет вам создать идеальную типографику для сайта в соответствии с принципами Золотой пропорции. Просто введите размер шрифта, ширину содержимого в поле на сайте, и нажмите «Set my type»!

Это простое и бесплатное приложение для Mac и PC. Просто введите число, и он рассчитает для него пропорцию в соответствии с правилом Золотого сечения.

Удобная программа, которая избавит вас от необходимости расчетов и рисования сеток. С ней найти идеальные пропорции проще простого! Работает со всеми графическими редакторами, в том числе и Photoshop. Несмотря на то, что инструмент платный – 49$, есть возможность протестировать пробную версию в течение 30 дней.

Человек различает окружающие его предметы по форме. Интерес к форме какого-либо предмета может быть продиктован жизненной необходимостью, а может быть вызван красотой формы. Форма, в основе построения которой лежат сочетание симметрии и золотого сечения, способствует наилучшему зрительному восприятию и появлению ощущения красоты и гармонии. Целое всегда состоит из частей, части разной величины находятся в определенном отношении друг к другу и к целому. Принцип золотого сечения - высшее проявление структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе.

Золотое сечение - гармоническая пропорция

В математике пропорцией (лат. proportio) называют равенство двух отношений: a : b = c : d .

Отрезок прямой АВ можно разделить на две части следующими способами:



    на две равные части - АВ : АС = АВ : ВС ;



    на две неравные части в любом отношении (такие части пропорции не образуют);



    таким образом, когда АВ : АС = АС : ВС .


Последнее и есть золотое деление или деление отрезка в крайнем и среднем отношении.

Золотое сечение - это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему

a : b = b : c или с : b = b : а .

Рис. 1. Геометрическое изображение золотой пропорции

Практическое знакомство с золотым сечением начинают с деления отрезка прямой в золотой пропорции с помощью циркуля и линейки.

Рис. 2. Деление отрезка прямой по золотому сечению. BC = 1/2 AB ; CD = BC

Из точки В восставляется перпендикуляр, равный половине АВ . Полученная точка С соединяется линией с точкой А . На полученной линии откладывается отрезок ВС , заканчивающийся точкой D . Отрезок AD переносится на прямую АВ . Полученная при этом точка Е делит отрезок АВ в соотношении золотой пропорции.

Отрезки золотой пропорции выражаются бесконечной иррациональной дробью AE = 0,618..., если АВ принять за единицу, ВЕ = 0,382... Для практических целей часто используют приближенные значения 0,62 и 0,38. Если отрезок АВ принять за 100 частей, то большая часть отрезка равна 62, а меньшая - 38 частям.

Свойства золотого сечения описываются уравнением:

x 2 - x - 1 = 0.

Решение этого уравнения:

Свойства золотого сечения создали вокруг этого числа романтический ореол таинственности и чуть ли не мистического поклонения.

Второе золотое сечение

Болгарский журнал «Отечество» (№10, 1983 г.) опубликовал статью Цветана Цекова-Карандаша «О втором золотом сечении», которое вытекает из основного сечения и дает другое отношение 44: 56.

Такая пропорция обнаружена в архитектуре, а также имеет место при построении композиций изображений удлиненного горизонтального формата.

Рис. 3. Построение второго золотого сечения

Деление осуществляется следующим образом (см. рис.3). Отрезок АВ делится в пропорции золотого сечения. Из точки С восставляется перпендикуляр СD . Радиусом АВ находится точка D , которая соединяется линией с точкой А . Прямой угол АСD делится пополам. Из точки С проводится линия до пересечения с линией AD . Точка Е делит отрезок AD в отношении 56: 44.

Рис. 4. Деление прямоугольника линией второго золотого сечения

На рис. 4 показано положение линии второго золотого сечения. Она находится посередине между линией золотого сечения и средней линией прямоугольника.

Золотой треугольник

Для нахождения отрезков золотой пропорции восходящего и нисходящего рядов можно пользоваться пентаграммой .

Рис. 5. Построение правильного пятиугольника и пентаграммы

Для построения пентаграммы необходимо построить правильный пятиугольник. Способ его построения разработал немецкий живописец и график Альбрехт Дюрер (1471...1528). Пусть O - центр окружности, A - точка на окружности и Е - середина отрезка ОА . Перпендикуляр к радиусу ОА , восставленный в точкеО , пересекается с окружностью в точке D . Пользуясь циркулем, отложим на диаметре отрезок CE = ED . Длина стороны вписанного в окружность правильного пятиугольника равна DC . Откладываем на окружности отрезки DC и получим пять точек для начертания правильного пятиугольника. Соединяем углы пятиугольника через один диагоналями и получаем пентаграмму. Все диагонали пятиугольника делят друг друга на отрезки, связанные между собой золотой пропорцией.

Каждый конец пятиугольной звезды представляет собой золотой треугольник. Его стороны образуют угол 36° при вершине, а основание, отложенное на боковую сторону, делит ее в пропорции золотого сечения.

Рис. 6. Построение золотого треугольника

Проводим прямую АВ . От точки А откладываем на ней три раза отрезок О произвольной величины, через полученную точку Р проводим перпендикуляр к линии АВ , на перпендикуляре вправо и влево от точки Р откладываем отрезки О . Полученные точки d и d 1 соединяем прямыми с точкой А . Отрезок dd 1 откладываем на линию Ad 1 , получая точку С . Она разделила линию Ad 1 в пропорции золотого сечения. Линиями Ad 1 и dd 1 пользуются для построения «золотого» прямоугольника.

История золотого сечения

Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзье нашел, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображенный на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления.

Греки были искусными геометрами. Даже арифметике обучали своих детей при помощи геометрических фигур. Квадрат Пифагора и диагональ этого квадрата были основанием для построения динамических прямоугольников.

Рис. 7. Динамические прямоугольники

Платон (427...347 гг. до н.э.) также знал о золотом делении. Его диалог «Тимей» посвящен математическим и эстетическим воззрениям школы Пифагора и, в частности, вопросам золотого деления.

В фасаде древнегреческого храма Парфенона присутствуют золотые пропорции. При его раскопках обнаружены циркули, которыми пользовались архитекторы и скульпторы античного мира. В Помпейском циркуле (музей в Неаполе) также заложены пропорции золотого деления.

Рис. 8. Античный циркуль золотого сечения

В дошедшей до нас античной литературе золотое деление впервые упоминается в «Началах» Евклида. Во 2-й книге «Начал» дается геометрическое построение золотого деления После Евклида исследованием золотого деления занимались Гипсикл (II в. до н.э.), Папп (III в. н.э.) и др. В средневековой Европе с золотым делением познакомились по арабским переводам «Начал» Евклида. Переводчик Дж. Кампано из Наварры (III в.) сделал к переводу комментарии. Секреты золотого деления ревностно оберегались, хранились в строгой тайне. Они были известны только посвященным.

В эпоху Возрождения усиливается интерес к золотому делению среди ученых и художников в связи с его применением как в геометрии, так и в искусстве, особенно в архитектуре Леонардо да Винчи, художник и ученый, видел, что у итальянских художников эмпирический опыт большой, а знаний мало. Он задумал и начал писать книгу по геометрии, но в это время появилась книга монаха Луки Пачоли, и Леонардо оставил свою затею. По мнению современников и историков науки, Лука Пачоли был настоящим светилом, величайшим математиком Италии в период между Фибоначчи и Галилеем. Лука Пачоли был учеником художника Пьеро делла Франчески, написавшего две книги, одна из которых называлась «О перспективе в живописи». Его считают творцом начертательной геометрии.

Лука Пачоли прекрасно понимал значение науки для искусства. В 1496 г по приглашению герцога Моро он приезжает в Милан, где читает лекции по математике. В Милане при дворе Моро в то время работал и Леонардо да Винчи. В 1509 г. в Венеции была издана книга Луки Пачоли «Божественная пропорция» с блестяще выполненными иллюстрациями, ввиду чего полагают, что их сделал Леонардо да Винчи. Книга была восторженным гимном золотой пропорции. Среди многих достоинств золотой пропорции монах Лука Пачоли не преминул назвать и ее «божественную суть» как выражение божественного триединства бог сын, бог отец и бог дух святой (подразумевалось, что малый отрезок есть олицетворение бога сына, больший отрезок - бога отца, а весь отрезок - бога духа святого).

Леонардо да Винчи также много внимания уделял изучению золотого деления. Он производил сечения стереометрического тела, образованного правильными пятиугольниками, и каждый раз получал прямоугольники с отношениями сторон в золотом делении. Поэтому он дал этому делению названиезолотое сечение . Так оно и держится до сих пор как самое популярное.

В то же время на севере Европы, в Германии, над теми же проблемами трудился Альбрехт Дюрер. Он делает наброски введения к первому варианту трактата о пропорциях. Дюрер пишет. «Необходимо, чтобы тот, кто что-либо умеет, обучил этому других, которые в этом нуждаются. Это я и вознамерился сделать».

Судя по одному из писем Дюрера, он встречался с Лукой Пачоли во время пребывания в Италии. Альбрехт Дюрер подробно разрабатывает теорию пропорций человеческого тела. Важное место в своей системе соотношений Дюрер отводил золотому сечению. Рост человека делится в золотых пропорциях линией пояса, а также линией, проведенной через кончики средних пальцев опущенных рук, нижняя часть лица - ртом и т.д. Известен пропорциональный циркуль Дюрера.

Великий астроном XVI в. Иоган Кеплер назвал золотое сечение одним из сокровищ геометрии. Он первый обращает внимание на значение золотой пропорции для ботаники (рост растений и их строение).

Кеплер называл золотую пропорцию продолжающей саму себя «Устроена она так, - писал он, - что два младших члена этой нескончаемой пропорции в сумме дают третий член, а любые два последних члена, если их сложить, дают следующий член, причем та же пропорция сохраняется до бесконечности».

Построение ряда отрезков золотой пропорции можно производить как в сторону увеличения (возрастающий ряд), так и в сторону уменьшения (нисходящий ряд).

Если на прямой произвольной длины, отложить отрезок m , рядом откладываем отрезок M . На основании этих двух отрезков выстраиваем шкалу отрезков золотой пропорции восходящего и нисходящего рядов

Рис. 9. Построение шкалы отрезков золотой пропорции

В последующие века правило золотой пропорции превратилось в академический канон и, когда со временем в искусстве началась борьба с академической рутиной, в пылу борьбы «вместе с водой выплеснули и ребенка». Вновь «открыто» золотое сечение было в середине XIX в. В 1855 г. немецкий исследователь золотого сечения профессор Цейзинг опубликовал свой труд «Эстетические исследования». С Цейзингом произошло именно то, что и должно было неминуемо произойти с исследователем, который рассматривает явление как таковое, без связи с другими явлениями. Он абсолютизировал пропорцию золотого сечения, объявив ее универсальной для всех явлений природы и искусства. У Цейзинга были многочисленные последователи, но были и противники, которые объявили его учение о пропорциях «математической эстетикой».

Рис. 10. Золотые пропорции в частях тела человека

Цейзинг проделал колоссальную работу. Он измерил около двух тысяч человеческих тел и пришел к выводу, что золотое сечение выражает средний статистический закон. Деление тела точкой пупа - важнейший показатель золотого сечения. Пропорции мужского тела колеблются в пределах среднего отношения 13: 8 = 1,625 и несколько ближе подходят к золотому сечению, чем пропорции женского тела, в отношении которого среднее значение пропорции выражается в соотношении 8: 5 = 1,6. У новорожденного пропорция составляет отношение 1: 1, к 13 годам она равна 1,6, а к 21 году равняется мужской. Пропорции золотого сечения проявляются и в отношении других частей тела - длина плеча, предплечья и кисти, кисти и пальцев и т.д.

Рис. 11. Золотые пропорции в фигуре человека

Справедливость своей теории Цейзинг проверял на греческих статуях. Наиболее подробно он разработал пропорции Аполлона Бельведерского. Подверглись исследованию греческие вазы, архитектурные сооружения различных эпох, растения, животные, птичьи яйца, музыкальные тона, стихотворные размеры. Цейзинг дал определение золотому сечению, показал, как оно выражается в отрезках прямой и в цифрах. Когда цифры, выражающие длины отрезков, были получены, Цейзинг увидел, что они составляют ряд Фибоначчи, который можно продолжать до бесконечности в одну и в другую сторону. Следующая его книга имела название «Золотое деление как основной морфологический закон в природе и искусстве». В 1876 г. в России была издана небольшая книжка, почти брошюра, с изложением этого труда Цейзинга. Автор укрылся под инициалами Ю.Ф.В. В этом издании не упомянуто ни одно произведение живописи.

В конце XIX - начале XX вв. появилось немало чисто формалистических теории о применении золотого сечения в произведениях искусства и архитектуры. С развитием дизайна и технической эстетики действие закона золотого сечения распространилось на конструирование машин, мебели и т.д.

Ряд Фибоначчи

С историей золотого сечения косвенным образом связано имя итальянского математика монаха Леонардо из Пизы, более известного под именем Фибоначчи (сын Боначчи). Он много путешествовал по Востоку, познакомил Европу с индийскими (арабскими) цифрами. В 1202 г вышел в свет его математический труд «Книга об абаке» (счетной доске), в котором были собраны все известные на то время задачи. Одна из задач гласила «Сколько пар кроликов в один год от одной пары родится». Размышляя на эту тему, Фибоначчи выстроил такой ряд цифр:

Ряд чисел 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д. известен как ряд Фибоначчи. Особенность последовательности чисел состоит в том, что каждый ее член, начиная с третьего, равен сумме двух предыдущих 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13, 8 + 13 = 21; 13 + 21 = 34 и т.д., а отношение смежных чисел ряда приближается к отношению золотого деления. Так, 21: 34 = 0,617, а 34: 55 = 0,618. Это отношение обозначается символом Ф . Только это отношение - 0,618: 0,382 - дает непрерывное деление отрезка прямой в золотой пропорции, увеличение его или уменьшение до бесконечности, когда меньший отрезок так относится к большему, как больший ко всему.

Фибоначчи так же занимался решением практических нужд торговли: с помощью какого наименьшего количества гирь можно взвесить товар? Фибоначчи доказывает, что оптимальной является такая система гирь: 1, 2, 4, 8, 16...

Обобщенное золотое сечение

Ряд Фибоначчи мог бы остаться только математическим казусом, если бы не то обстоятельство, что все исследователи золотого деления в растительном и в животном мире, не говоря уже об искусстве, неизменно приходили к этому ряду как арифметическому выражению закона золотого деления.

Ученые продолжали активно развивать теорию чисел Фибоначчи и золотого сечения. Ю. Матиясевич с использованием чисел Фибоначчи решает 10-ю проблему Гильберта. Возникают изящные методы решения ряда кибернетических задач (теории поиска, игр, программирования) с использованием чисел Фибоначчи и золотого сечения. В США создается даже Математическая Фибоначчи-ассоциация, которая с 1963 года выпускает специальный журнал.

Одним из достижений в этой области является открытие обобщенных чисел Фибоначчи и обобщенных золотых сечений.

Ряд Фибоначчи (1, 1, 2, 3, 5, 8) и открытый им же «двоичный» ряд гирь 1, 2, 4, 8, 16... на первый взгляд совершенно разные. Но алгоритмы их построения весьма похожи друг на друга: в первом случае каждое число есть сумма предыдущего числа с самим собой 2 = 1 + 1; 4 = 2 + 2..., во втором - это сумма двух предыдущх чисел 2 = 1 + 1, 3 = 2 + 1, 5 = 3 + 2.... Нельзя ли отыскать общую математическую формулу, из которой получаются и «двоичный» ряд, и ряд Фибоначчи? А может быть, эта формула даст нам новые числовые множества, обладающие какими-то новыми уникальными свойствами?

Действительно, зададимся числовым параметром S , который может принимать любые значения: 0, 1, 2, 3, 4, 5... Рассмотрим числовой ряд, S + 1 первых членов которого - единицы, а каждый из последующих равен сумме двух членов предыдущего и отстоящего от предыдущего на S шагов. Если n -й член этого ряда мы обозначим через φ S (n ), то получим общую формулу φ S (n ) = φ S (n - 1) + φ S (n - S - 1).

Очевидно, что при S = 0 из этой формулы мы получим «двоичный» ряд, при S = 1 - ряд Фибоначчи, при S = 2, 3, 4. новые ряды чисел, которые получили название S -чисел Фибоначчи.

В общем виде золотая S -пропорция есть положительный корень уравнения золотого S -сечения x S+1 - x S - 1 = 0.

Нетрудно показать, что при S = 0 получается деление отрезка пополам, а при S = 1 -знакомое классическое золотое сечение.

Отношения соседних S -чисел Фибоначчи с абсолютной математической точностью совпадают в пределе с золотыми S -пропорциями! Математики в таких случаях говорят, что золотые S -сечения являются числовыми инвариантами S -чисел Фибоначчи.

Факты, подтверждающие существование золотых S -сечений в природе, приводит белорусский ученый Э.М. Сороко в книге «Структурная гармония систем» (Минск, «Наука и техника», 1984). Оказывается, например, что хорошо изученные двойные сплавы обладают особыми, ярко выраженными функциональными свойствами (устойчивы в термическом отношении, тверды, износостойки, устойчивы к окислению и т. п) только в том случае, если удельные веса исходных компонентов связаны друг с другом одной из золотых S -пропорций. Это позволило автору выдвинуть гипотезe о том, что золотыеS -сечения есть числовые инварианты самоорганизующихся систем. Будучи подтвержденной экспериментально, эта гипотеза может иметь фундаментальное значение для развития синергетики - новой области науки, изучающей процессы в самоорганизующихся системах.

С помощью кодов золотой S -пропорции можно выразить любое действительное число в виде суммы степеней золотых S -пропорций с целыми коэффициентами.

Принципиальное отличие такого способа кодирования чисел заключается в том, что основания новых кодов, представляющие собой золотые S -пропорции, при S > 0 оказываются иррациональными числами. Таким образом, новые системы счисления с иррациональными основаниями как бы ставят «с головы на ноги» исторически сложившуюся иерархию отношений между числами рациональными и иррациональными. Дело в том, что сначала были «открыты» числа натуральные; затем их отношения - числа рациональные. И лишь позже - после открытия пифагорийцами несоизмеримых отрезков - на свет появились иррациональные числа. Скажем, в десятичной, пятеричной, двоичной и других классических позиционных системах счисления в качестве своеобразной первоосновы были выбраны натуральные числа - 10, 5, 2, - из которых уже по определенным правилам конструировались все другие натуральные, а также рациональные и иррациональные числа.

Своего рода альтернативой существующим способам счисления выступает новая, иррациональная система, в качестве первоосновы, начала счисления которой выбрано иррациональное число (являющееся, напомним, корнем уравнения золотого сечения); через него уже выражаются другие действительные числа.

В такой системе счисления любое натуральное число всегда представимо в виде конечной - а не бесконечной, как думали ранее! - суммы степеней любой из золотых S -пропорций. Это одна из причин, почему «иррациональная» арифметика, обладая удивительной математической простотой и изяществом, как бы вобрала в себя лучшие качества классической двоичной и «Фибоначчиевой» арифметик.

Принципы формообразования в природе

Все, что приобретало какую-то форму, образовывалось, росло, стремилось занять место в пространстве и сохранить себя. Это стремление находит осуществление в основном в двух вариантах - рост вверх или расстилание по поверхности земли и закручивание по спирали.

Раковина закручена по спирали. Если ее развернуть, то получается длина, немного уступающая длине змеи. Небольшая десятисантиметровая раковина имеет спираль длиной 35 см. Спирали очень распространены в природе. Представление о золотом сечении будет неполным, если не сказать о спирали.

Рис. 12. Спираль Архимеда

Форма спирально завитой раковины привлекла внимание Архимеда. Он изучал ее и вывел уравнение спирали. Спираль, вычерченная по этому уравнению, называется его именем. Увеличение ее шага всегда равномерно. В настоящее время спираль Архимеда широко применяется в технике.

Еще Гете подчеркивал тенденцию природы к спиральности. Винтообразное и спиралевидное расположение листьев на ветках деревьев подметили давно. Спираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т.д. Совместная работа ботаников и математиков пролила свет на эти удивительные явления природы. Выяснилось, что в расположении листьев на ветке (филотаксис), семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а стало быть, проявляет себя закон золотого сечения. Паук плетет паутину спиралеобразно. Спиралью закручивается ураган. Испуганное стадо северных оленей разбегается по спирали. Молекула ДНК закручена двойной спиралью. Гете называл спираль «кривой жизни».

Среди придорожных трав растет ничем не примечательное растение - цикорий. Приглядимся к нему внимательно. От основного стебля образовался отросток. Тут же расположился первый листок.

Рис. 13. Цикорий

Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок еще меньшего размера и снова выброс. Если первый выброс принять за 100 единиц, то второй равен 62 единицам, третий - 38, четвертый - 24 и т.д. Длина лепестков тоже подчинена золотой пропорции. В росте, завоевании пространства растение сохраняло определенные пропорции. Импульсы его роста постепенно уменьшались в пропорции золотого сечения.

Рис. 14. Ящерица живородящая

В ящерице с первого взгляда улавливаются приятные для нашего глаза пропорции - длина ее хвоста так относится к длине остального тела, как 62 к 38.

И в растительном, и в животном мире настойчиво пробивается формообразующая тенденция природы - симметрия относительно направления роста и движения. Здесь золотое сечение проявляется в пропорциях частей перпендикулярно к направлению роста.

Природа осуществила деление на симметричные части и золотые пропорции. В частях проявляется повторение строения целого.

Рис. 15. Яйцо птицы

Великий Гете, поэт, естествоиспытатель и художник (он рисовал и писал акварелью), мечтал о создании единого учения о форме, образовании и преобразовании органических тел. Это он ввел в научный обиход термин морфология.

Пьер Кюри в начале нашего столетия сформулировал ряд глубоких идей симметрии. Он утверждал, что нельзя рассматривать симметрию какого-либо тела, не учитывая симметрию окружающей среды.

Закономерности «золотой» симметрии проявляются в энергетических переходах элементарных частиц, в строении некоторых химических соединений, в планетарных и космических системах, в генных структурах живых организмов. Эти закономерности, как указано выше, есть в строении отдельных органов человека и тела в целом, а также проявляются в биоритмах и функционировании головного мозга и зрительного восприятия.

Золотое сечение и симметрия

Золотое сечение нельзя рассматривать само по себе, отдельно, без связи с симметрией. Великий русский кристаллограф Г.В. Вульф (1863...1925) считал золотое сечение одним из проявлений симметрии.

Золотое деление не есть проявление асимметрии, чего-то противоположного симметрии Согласно современным представлениям золотое деление - это асимметричная симметрия. В науку о симметрии вошли такие понятия, как статическая и динамическая симметрия . Статическая симметрия характеризует покой, равновесие, а динамическая - движение, рост. Так, в природе статическая симметрия представлена строением кристаллов, а в искусстве характеризует покой, равновесие и неподвижность. Динамическая симметрия выражает активность, характеризует движение, развитие, ритм, она - свидетельство жизни. Статической симметрии свойственны равные отрезки, равные величины. Динамической симметрии свойственно увеличение отрезков или их уменьшение, и оно выражается в величинах золотого сечения возрастающего или убывающего ряда.

Учащиеся 9 "А" класса

Мы неодинаково относимся к предметам и явлениям окружающей действительности. Беспорядочность, бесформенность, несоразмерность воспринимаются нами как безобразное и производят отталкивающее впечатление. А предметы и явления, которым свойственна мера, целесообразность и гармония воспринимаются как красивое и вызывают у нас чувство восхищения, радости, поднимают настроение. Людей с давних времён волновал вопрос, подчиняются ли такие неуловимые вещи как красота и гармония, каким-либо математическим расчётам. Данный проект посвящен одному из таких математических соотношений, там, где оно присутствует, ощущается гармония и красота.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Суть и применение золотого сечения в жизни человека

Актуальность темы Какова роль золотого сечения в жизни человека? Мы неодинаково относимся к предметам и явлениям окружающей действительности. Беспорядочность, бесформенность, несоразмерность воспринимаются нами как безобразное и производят отталкивающее впечатление. А предметы и явления, которым свойственна мера, целесообразность и гармония воспринимаются как красивое и вызывают у нас чувство восхищения, радости, поднимают настроение. Людей с давних времён волновал вопрос, подчиняются ли такие неуловимые вещи как красота и гармония, каким-либо математическим расчётам. Данный проект посвящен одному из таких математических соотношений, там, где оно присутствует, ощущается гармония и красота.

Проблемные вопросы Где в жизни встречается золотое сечение? В каких областях применяется золотое сечение?

Цель: 1. Расширить кругозор учащихся, способствовать развитию познавательно- го интереса. 2. Показать школьникам общеинтеллектуальное значение математики. 3. Способствовать познанию законов красоты и гармонии окружающего мира.

1. Изучить геометрическое определение "золотого сечения"; 2. Изучить алгебраические свойства золотой пропорции; 3. Узнать о применении золотого сечения в математике; 4. Изучить применение золотого сечения в жизни человека; 5. Способствовать познанию законов красоты и гармонии окружающего мира; 6. Показать школьникам общеинтеллектуальное значение математики. Задачи

Методы 1.Обработка информации 2.Анкетирование учащихся 3.Работа с различными источниками 4.Работа с компьютером

План исследования 1.Понятие «Золотое сечение» 2.Историческая справка 3.Геометрическое построение «золотого сечения» 4.Понятие Золотого треугольника 5.Понятие Золотого прямоугольника 6.Понятие Золотой спирали 7.Построение правильного пятиугольника 8.Символ «золотого сечения» 9.«Золотое сечение» в: - природе - искусстве - архитектуре

Ход работы над проектом Организационный момент 2. Определение цели и задач 3. Выдвижение гипотезы 4. Деление на группы 5. Сбор теоретического материала 6. Анкетирование 7. Анализ и обработка информации 8. Демонстрация проекта

Опрос: Знаете ли Вы о «Золотом сечении»? Хотели ли Вы больше узнать о «Зотолом сечении»? Хотите ли Вы узнать о «Золотом сечении»?

Геометрия владеет двумя сокровищами: одно из них – теорема Пифагора, другое- деление отрезка в среднем и крайнем отношении. И. Кеплер

Что же такое золотое сечение?

с: b = b: a a: b = b: c Золотое сечение - это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему.

При золотом сечении длина большего отрезка есть среднее пропорциональное длин всего отрезка и его наименьшей части.

численное значение "золотого отношения"

Пентаграмма фигура образованная диагоналями правильного пятиугольника, т.е. правильная пятиконечная звезда. Диагоналями правильного пятиугольника делятся точкой пересечения в "золотой пропорции", т.е. выполняется уже известное нам равенство:

Золотые треугольники Каждый конец пятиугольной звезды представляет собой золотой треугольник. Свойства угол при вершине равен 36 о; основание, отложенное на боковую сторону делит ее в пропорции "золотого сечения"   АС: С D = CD: AD CD = BC

Числа Фибоначчи С золотой пропорцией тесно связан ряд чисел Фибоначчи: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д Фибоначчи: "… каждый член ряда, начиная с третьего, равен сумме двух предыдущих " Кеплер: "… отношение рядом стоящих чисел в пределе стремится к золотой пропорции Фибоначчи. Это свойство присуще не только числам Фибоначчи"

Основные пропорции в человеческой фигуре и лице

высота лица (до корней волос) относится к вертикальному расстоянию между дугами бровей и нижней частью подбородка, как расстояние между нижней часть носа и нижней часть подбородка

Золотая пропорция применялась многими античными скульпторами. Известна золотая пропорция статуи Аполлона Бельведерского: рост изображенного человека делится пупочной линией в золотом сечении.

Аполлон Бельведерский

Зевс Афина Олимпийский Парфенос

Измерения нескольких тысяч человеческих тел позволили обнаружить: - для младенцев это отношение равно - 1 /1 для взрослых мужчин - 13 / 8 = 1,625 для взрослых женщин – 8 / 5 = 1,6 Следовательно пропорции мужчин ближе к " золотому сечению " чем пропорции женщин.

«Золотое сечение» в живописи

Одно из известнейших произведений искусства – портрет Моны Лизы (Джоконды) долгие годы привлекает внимание исследователей, которые обнаружили, что композиция рисунка основана на золотых треугольниках, являющихся частями правильного звездчатого пятиугольника

Портрет Монны Лизы (Джоконды) долгие годы привлекает внимание исследователей, которые обнаружили, что композиция рисунка основана на золотых треугольниках, являющихся частями правильного звездчатого пятиугольника.

Кончив сказку, Леонардо взглянул на Монну Лизу, ее лицо озарилось светом, глаза сияли. Потом, точно пробудившись от сна, она вздохнула, провела по лицу рукой и без слов пошла на свое место, сложила руки и приняла обычную позу. Но дело было сделано – художник пробудил равнодушную статую; улыбка блаженства, медленно исчезая с ее лица, осталась в уголках рта и трепетала, придавая лицу изумительное, загадочное и чуть лукавое выражение, как у человека, который узнал тайну и, бережно ее храня, не может сдержать торжество. Леонардо молча работал, боясь упустить этот момент, этот луч солнца, осветивший его скучную модель...

Шишкин - "Сосновая Роща" На этой знаменитой картине И. И. Шишкина с очевидностью просматриваются мотивы золотого сечения.

Еще в эпоху Возрождения художники открыли, что любая картина имеет определенные точки, невольно приковывающие наше внимание, так называемые зрительные центры. При этом абсолютно неважно, какой формат имеет картина - горизонтальный или вертикальный. Таких точек всего четыре, они делят величину изображения по горизонтали и вертикали в золотом сечении, т.е. расположены они на расстоянии примерно 3/8 и 5/8 от соответствующих краев плоскости.

«Золотое сечение» в архитектуре

" Архитектура – главнейшие имеет три предмета: красоту, спокойность и прочность здания... К достижению сего служит руководством знание пропорции, перспектива, механика или вообще физика, а всем им общим вождем является рассудок." В.Баженов

Одним из красивейших произведений древнегреческой архитектуры является Парфенон (V в. до н. э.)

На рисунках виден целый ряд закономерностей, связанных с золотым сечением. Пропорции здания можно выразить через различные степени числа Ф=0,618... На плане пола Парфенона также можно заметить «золотые прямоугольники».

Пантеон Архитектурные здания выполненные на основе "золотого сечения"

Золотое соотношение мы можем увидеть и в здании собора Парижской Богоматери (Нотр-дам де Пари):

Здание сената в Кремле Архитектурные здания выполненные на основе "золотого сечения"

Дом Пашкова в Москве Архитектурные здания выполненные на основе "золотого сечения"

Алгебра музыки Музыка - искусство звука, ...звук - сама материя музыки... звук должен быть закутан в тишину, звук должен покоиться в тишине, как драгоценный камень в бархатной шкатулке. Генрих Нейгауз

Наибольшее количество музыкальных произведений, имеющих " золотое сечение " , у гениальных авторов Гайдна (97%), Аренского (95%), Скрябина (90%), Шопена (92%) . Бетховен (97%) Моцарт (91%) Шуберт (91%)

В 1770 сочинениях 42 композиторов наблюдалось 3275 золотых сечений. В 27 этюд ах Шопена обнаружено 154 золотых сечения, всего в трех этюдах золотое сечение отсутствовало.

Математика стихов В строении многих художественных произведений проявляются золотая пропорция и числа Фибоначчи. А.С.Пушкин. 1829-1836 г.г. 109 стихов - 4 до 116 строк. Средний размер этих стихотворений составил 88 строк. Стихи В ыделяются наиболее встречающиеся размеры – 5,8,13,21,34 – близкие к числам ряда Фибоначчи

В.Я. Брюсов. 18 82 -1 912 г.г. 360 стихо творений по 8 – 36 строк. Средний размер этих стихотворений составил 1 8 строк. В ыделяются наиболее встречающиеся размеры – 8,13,21,34 – близкие к числам ряда Фибоначчи

Проза А.С.Пушкин. "Пиковая дама" 6 глава 853 строк. Кульминация – 535-я строка  853:535 =1,6 1 глава 110 строк. Кульминация – 68-я строка  110:68 =1,62 2 глава 219 строк. Кульминация – 135-я строка  219:135 =1,62 3 глава 212 строк. Кульминация – 131-я строка  212:131 =1,62 4 глава 113 строк. Кульминация – 70-я строка  113:70 =1,614 5 глава 75 строк. Кульминация – 46-я строка  75:46 =1,63 6 глава 124 строки. Кульминация–77-я строка  124:77 =1,62 Золотая пропорция – это гармония. Таким образом чувство гармонии у А.С.Пушкина было развито необыкновенно, что подтверждает гениальность великого поэта и писателя

Геометрия владеет двумя сокровищами: одно из них – это теорема Пифагора, а другое – деление отрезка в крайнем и среднем отношении. Первое можно сравнить с мерой золота; второе же напоминает драгоценный камень. Иоганн Кеплер

Вывод Мы проследили и увидели, что “золотое сечение” широко применяется во многих областях науки. Поэтому оно “ золотое ”.

 

Возможно, будет полезно почитать: