Открытие Д.И. Менделеевым периодического закона

Есть в истории мировой науки открытия, которые смело можно назвать революционными. Их не так уж и много, но именно они выводили науку на новые рубежи, именно они показывали принципиально новый подход к решению поставленных задач, именно они имели огромное мировоззренческое и методологическое значение, более глубоко и полно раскрывая научную картину мира. К таковым можно отнести, например, теорию происхождения видов Ч.Дарвина, законы наследственности Г.Менделя, теорию относительности А.Эйнштейна. Периодический закон Д.И.Менделеева из разряда таких открытий.

В истории мировой науки и культуры имя Д.И.Менделеева занимает одно из самых почетных мест в ряду величайших корифеев мысли всех времен и народов. Это был не только гениальный и разносторонний ученый, оставивший потомкам основательные и оригинальные труды по физике, химии, метеорологии, метрологии, технике, различным отраслям промышленности и сельского хозяйства, экономике, но и выдающийся педагог, передовой общественный деятель, всю жизнь посвятивший неутомимому труду на благо и процветание своей Родины и науки.

Любая из его работ, будь то классический курс Основы химии, исследования по теории растворов или упругости газов и т.д., могла бы не только сделать имя ученого известным своим современникам, но и оставить значимый след в истории науки. Но все же первое, о чем мы думаем, говоря о Д.И.Менделееве, - это открытый им периодический закон и составленная таблица химических элементов. Поразительная, ставшая привычной четкость таблицы Менделеева из школьного учебника наших дней скрывает от нас гигантскую работу ученого по осознанию всего, что было открыто до него о превращениях веществ, работу, посильную только гению, благодаря которой и появилось открытие, не имеющее себе равных в истории науки, ставшее не только венцом атомно-молекулярного учения, но и оказавшиеся широким обобщением всего фактического материала химии, накопленного в течение ряда веков. Поэтому периодический закон стал прочной основой всего дальнейшего развития химии и других естественных наук.

Можно сказать, что путь к этому открытию Д.И.Менделеев начинает со своих первых работ, например Изоморфизм и Удельные объемы, в которых при изучении взаимосвязи свойств с составом начинает анализировать сначала свойства отдельных элементов, затем естественных групп и всех классов соединений, включая простые вещества. Но наиболее близко он подходит к этой проблеме при создании своего учебника Основы химии. Дело в том, что среди имевшихся учебников на русском и иностранных языках ни один не удовлетворял его полностью. После Международного конгресса в Карлсруэ требовался учебник химии, основанный на новых принципах, принятых большинством химиков и отражающий все новейшие достижения химической теории и практики. В процессе подготовки второй части Основ химии и было сделано открытие, не имевшее себе равных в истории науки. В течение двух последующих лет Д.И.Менделеев был занят важными теоретическими и экспериментальными исследованиями, связанными с выяснением ряда вопросов, возникших в связи с этим открытием. Итогом этой работы стала статья Периодическая законность химических элементов, опубликованная в 1871г. в Анналах химии и фармации. В ней были разработаны и последовательно изложены все стороны открытого им закона, а так же сформулированы важнейшие его приложения, т.е. Д.И.Менделеев указал путь направленного поиска в химии будущего. После Д.И.Менделеева химики знали, где и как искать неизвестное. Много замечательных ученых, основываясь на периодическом законе, предсказывали и описывали неизвестные химические элементы и их свойства. Все предсказанное, новые неизвестные элементы и их свойства и свойства их соединений, законы их поведения в природе - все было найдено, все подтвердилось. История науки не знает другого подобного триумфа. Открыт новый закон природы. Вместо разрозненных, не связанных между собой веществ перед наукой встала единая стройная система, объединившая в одно целое все элементы Вселенной.

Но не только в открытии нового заключался научный завет, оставленный Д.И.Менделеевым. Он поставил перед наукой еще более грандиозную задачу: объяснить взаимную связь между всеми элементами, между их физическими и химическими свойствами. После открытия периодического закона стало ясно, что атомы всех элементов построены по единому плану, что их строение может быть только таким, какое определяет периодичность их химических свойств. На развитие знаний о строении атома, о природе веществ закон Д.И.Менделеева оказал огромное и решающее влияние. В свою очередь, успехи атомной физики, появление новых методов исследования, развитие квантовой механики расширили и углубили сущность периодического закона, сохранили его актуальность и в наши дни.

Хотелось бы привести слова Д.И.Менделеева, записанные им в свой дневник 10 июля 1905г.: По-видимому, периодическому закону будущее не грозит разрушением, а только надстройки и развитие обещает (Ю. Соловьев. История химии).

Химия, как ни одна другая наука, приобрела за последние столетия вес и значимость. Использование на практике результатов исследований глубоко затронуло жизнь людей. С этим связан в наши дни интерес к истории химии, а также к жизни и деятельности великих химиков, к числу которых, без преувеличения, относится и Дмитрий Иванович Менделеев. Он являет собой образец настоящего ученого, достигшего значительных успехов в любом деле, за которое бы он не взялся. Не могут не вызывать уважение такие черты характера замечательного русского ученого, как независимость научного мышления, доверие лишь к результатам экспериментальных исследований, смелость в выводах даже тогда, когда они вступали в противоречие с общепризнанными представлениями. Но нельзя не согласиться, что периодический закон и составленная система элементов самое значительная его работа. Эта тема вызвала у меня интерес потому, что исследования в данной области по-прежнему остаются очень актуальными. Судить об этом можно по недавнему открытию российскими и американскими учеными 118 элемента периодической системы Д.И.Менделеева. Это научное событие еще раз подчеркивает, что, несмотря на более чем вековую историю, периодический закон остается основой научного исследования. Данная работа ставит своей целью не только рассказать об открытии этого великого закона, о той поистине титанической работе, предшествующей этому событию, но и является попыткой разобраться в предпосылках, проанализировать сложившуюся ситуацию с классификацией и систематизацией химических элементов до 1869г. и, кроме того, затронуть новейшую историю учения о периодичности.

Предпосылки открытия периодического закона

Любое открытие в науке, конечно, никогда не бывает внезапным, не возникает из ничего на пустом месте. Это сложный и длительный процесс, свою лепту в который вносят многие и многие замечательные ученые. Аналогичная ситуация сложилась и с периодическим законом. И, чтобы яснее представить те предпосылки, которые создали необходимые условия для открытия и обоснования периодического закона, следует рассмотреть основные направления исследований в области химии к середине XIX века (прил. таб. 1).

Надо сказать, что в течение первых десятилетий XIX в. в развитии химии наблюдался быстрый прогресс. Возникшая в самом начале столетия, химическая атомистика явилась мощным стимулом для разработки теоретических проблем и развития экспериментальных исследований, которые привели к открытиям основных химических законов (закон кратных отношений и закон постоянных пропорций, закон объемов реагирующих газов, закон Дюлонга и Пти, правило изоморфизма и других). Значительное развитие получили и экспериментальные исследования, в основном химико-аналитического характера, связанные с установлением атомных весов элементов, открытием новых элементов и изучением состава различных химических соединений. Но с определением атомных весов возникали трудности, связанные главным образом с тем, что оставались неизвестными точные формулы простейших соединений (окислов), на основе которых исследователи рассчитывали атомные веса. Между тем, уже открытые некоторые закономерности, которые могли бы служить важными критериями при установлении точных значений атомных весов, применялись крайне редко (объемный закон Гей-Люссака, закон Авогадро). Большинство химиков считали их случайными, не имеющими строгой фактической основы. Такое отсутствие уверенности в правильности определений атомных весов привело к появлению многочисленных систем атомных весов и эквивалентов и даже породило сомнения в необходимости принятия в химии самого понятия атомного веса. В результате такой неразберихи даже сравнительно простые соединения изображались в середине XIX в. множеством формул, например, вода изображалась одновременно четырьмя формулами, уксусная кислота - девятнадцатью и т.д. Но в то же время многие химики продолжали поиски новых методов определения атомных весов, а также новых критериев, позволяющих хотя бы косвенно подтвердить правильность полученных на основе анализа окислов значений. Уже существовали предложенные Жераром понятия атома, молекулы и эквивалента, но пользовались ими преимущественно молодые химики. Влиятельные химики старых поколений придерживались представлений, вошедших в науку в 20-х и 30-х годах благодаря Берцелиусу, Либиху и Дюма. Создалось такое положение, когда химики переставали понимать друг друга. В такой сложной обстановке возникла идея собрать наиболее видных ученых разных стран, чтобы договориться о единстве представлений по самым общим вопросам химии, в частности - об основных химических понятиях. Этот Международный конгресс состоялся в 1860г. в Карлсруэ. В числе семи русских химиков участвовал в нем и Д.И.Менделеев. Основная цель конгресса - прийти к единству в определениях фундаментальных понятий химии - атом, молекула, эквивалент - была достигнута. Особенно большое впечатление на участников конгресса, и Д.И.Менделеева в том числе, произвело выступление С.Канниццаро, изложившего основы атомно-молекулярной теории. В последствии Д.И.Менделеев неоднократно отмечал огромное значение конгресса в Карлсруэ для прогресса химии вообще, и для генезиса идеи периодического закона химических элементов в частности, а С.Канниццаро считал своим предшественником, т.к. установленные им атомные массы дали необходимую точку опоры.

Первые попытки систематизировать известные к тому времени элементы предпринял в 1789г. А.Лавуазье в своем учебнике химии. Его Таблица простых тел включала 35 простых веществ. А к моменту открытия периодического закона их уже насчитывалось 63. Надо сказать, что в первой половине XIX в. ученые предлагали различные классификации элементов, сходных по своим свойствам. Однако попытки установить закономерности изменений свойств в зависимости от атомного веса носили случайный характер и ограничивались большей частью констатацией отдельных фактов правильных отношений численных значений атомных весов между отдельными элементами в группах сходных элементов. Например, немецкий химик И.Дёберейнер в 1816 - 1829гг. при сопоставлении атомных весов некоторых химически сходных элементов нашел, что для многих широко распространенных в природе элементов эти числа довольно близки, а для таких элементов, как Fe, Co, Ni, Cr, Mn, они практически одинаковы. Кроме того, он отметил, что относительный атомный вес SrO представляет собой приблизительное среднее арифметическое из атомных весов CaO и ВаО. На этой основе Деберейнер предложил закон триад, состоящий в том, что сходные по химическим свойствам элементы могут быть сведены в группы по три элемента (триады), например Cl, Br, J или Са, Sr, Ва. При этом атомный вес среднего элемента триады близок к половине суммы атомных весов крайних элементов.

Одновременно с Деберейнером аналогичной проблемой занимался Л.Гмелин. Так, в своем известном справочном руководстве - Handbuch der anorganischen Chemie он привел таблицу химически сходных элементов, расставленных по группам в определенном порядке. Но принцип построения его таблицы был несколько иным (прил. таб. 2). Вверху таблицы, вне групп элементов, были расположены три базисных элемента - O, N, H. Под ними расставлены триады, тетрады и пентады, причем под кислородом расположены группы металлоидов (по Берцелиусу), т.е. электроотрицательных элементов, под водородом - металлы. Электроположительные и электроотрицательные свойства групп элементов убывают сверху вниз. В 1853г. таблица Гмелина была расширена и улучшена И.Г.Гледстоном, включившим в нее редкоземельные и вновь открытые элементы (Be, Er, Y, Di и др.). В дальнейшем законом триад занимался ряд ученых, например Э.Ленссен. В 1857г. он составил таблицу из 20 триад и предложил метод расчета атомных весов на основе трех триад, или эннеад (девяток). Он был так уверен в абсолютной точности закона, что даже попытался расчетать неизвестные еще атомные веса некоторых редкоземельных элементов.

Дальнейшие попытки установления взаимосвязи между физическими и химическими свойствами элементов также сводились к сопоставлениям численных значений атомных весов. Так М.И.Петтенкофер в 1850г. заметил, что атомные веса некоторых элементов отличаются на число, кратное 8. Поводом для таких сопоставлений послужило открытие гомологических рядов органических соединений. Именно при попытках установить существование подобных же рядов для элементов М.Петтенкофер, произведя расчеты, нашел, что разность в атомных весах у некоторых элементов составляет 8, иногда 5 или 18. В 1851г. подобные же соображения о существовании правильных численных отношений между значениями атомных весов элементов высказал Ж.Б.Дюма.

В 60-х годах XIX в. появились сопоставления атомных и эквивалентных весов и химических свойств элементов несколько иного рода. Наряду с сопоставлениями свойств элементов в группах стали сопоставляться между собой и сами группы элементов. Такие попытки привели к созданию разнообразных таблиц и графиков, в которых объединялись все или большинство известных элементов. Автором первой таблицы был В.Одлинг. Он разбил 57 элементов (в конечном варианте) на 17 групп - монад, диад, триад, тетрад и пентад не включив, при этом, ряд элементов. Смысл этой таблицы был довольно прост и не представлял чего-либо принципиально нового. Через несколько лет, точнее в 1862г., французский химик Б. де Шанкуртуа предпринял попытку выразить соотношения между атомными весами элементов в геометрической форме (прил. таб. 3). Он расположил все элементы в порядке возрастания их атомных весов на боковой поверхности цилиндра по винтовой линии, идущей под углом 45о. Боковая поверхность цилиндра была разбита на 16 частей (атомный вес кислорода). Атомные веса элементов отложены на кривой в соответствующем масштабе (за единицу принят атомный вес водорода). Если развернуть цилиндр, то на поверхности (плоскости) получится ряд отрезков прямых, параллельных друг другу. На первом сверху отрезке находятся точки для элементов с атомными весами от 1 до 16, на втором - от 16 до 32, на третьем - от 32 до 48 и т.д. Л.А.Чугаев в своей работе Периодическая система химических элементов отмечал, что в системе де Шанкуртуа ясно выступает периодическое чередование свойств…Ясно, что в этой системе заключается уже зародыш периодического закона. Но система Шанкуртуа дает обширный простор произволу. С одной стороны, среди элементов-аналогов попадаются нередко элементы совершенно посторонние. Так, за кислородом и серой, между S и Те попадается титан; Мn попадает в число аналогов Li, Na и К; железо помещается на одну образующую с Са и т.д. С другой стороны, та же система дает два места для углерода: одно - для С с атомным весом 12, другое, отвечающее атомному весу 44 (Н. Фигуровский. Очерк общей истории химии). Таким образом, зафиксировав некоторые соотношения между атомными весами элементов, Шанкуртуа не смог прийти к напрашивающемуся обобщению - установлению периодического закона.

Почти одновременно с винтовой линией де Шанкартуа появилась табличная система Дж.А.Р.Ньюлэндса, названная им законом октав и имеющая много общего с таблицами Одлинга (прил. таб. 4). 62 элемента в ней расположены в порядке возрастания эквивалентных весов в 8 столбцах и 7 группах, расположенных горизонтально. Характерно, что у символов элементов вместо атомных весов стоят номера. Всего их 56. В ряде случаев под одним и тем же номером стоит по два элемента. Ньюлэндс подчеркивал, что номера химически сходных элементов отличаются друг от друга на число 7 (или кратное 7), например, элемент с порядковым номером 9 (натрий) повторяет свойства элемента 2 (литий) и т.д. Иными словами, наблюдается такая же картина, как в музыкальной гамме - восьмая нота повторяет первую. Отсюда и название таблицы. Закон октав Ньюлэндса неоднократно подвергался анализу и критике с различных точек зрения. Периодичность изменения свойств элементов просматривается лишь в скрытом виде, а то, что в таблице не оставлено ни одного свободного места для еще не открытых элементов делает эту таблицу лишь формальным сопоставлением элементов и лишает ее значения системы, выражающей закон природы. Хотя, как отмечает Л.А.Чугаев, если бы Ньюлэндс пользовался при составлении своей таблицы вместо эквивалентов новейшими значениями атомных весов, незадолго перед тем установленных Жераром и Канниццаро, то он мог бы избежать многих противоречий.

Среди других исследователей, занимавшихся в 60-х годах XIX века сопоставлениями атомных весов элементов с учетом их различных свойств, можно назвать немецкого химика Л.Мейера. В 1864г. он опубликовал книгу Современные теории химии и их значение для химической статики в которой приведена таблица из 44 элементов (известно в это время 63), расставленных в шести столбцах в соответствии с их валентностью по водороду. Из этой таблицы видно, что Мейер стремился, прежде всего, констатировать правильность в разностях значений атомных весов в группах сходных элементов. Однако он был далек от того, чтобы заметить наиболее существенную черту внутренней связи между элементами - периодичность их свойств. Даже в 1870г., уже после появления нескольких сообщений Д.И.Менделеева о периодическом законе, Мейер, опубликовавший кривую периодического изменения атомных объемов, не смог увидеть в этой кривой, представляющей собой одно из выражений периодического закона, основного признака закона. Между тем, через несколько месяцев после появления первых сообщений Д.И.Менделеева об открытом им периодическом законе, Л.Мейер выступил с претензией на приоритет этого открытия и в течение ряда лет настойчиво высказывал притязания по этому поводу.

Таковы в самых общих чертах основные попытки установить внутреннюю связь между элементами, предпринимавшиеся до появления первых сообщений Д.И.Менделеева о периодическом законе.

Д.И.Менделеев ни в статьях, посвященных периодическому закону, ни в автобиографических заметках почти не упоминает о том, как было совершено открытие. Но когда однажды, лет через тридцать после открытия периодического закона, один журналист спросил его: Как вам пришла в голову периодическая система?, Д.И.Менделеев ответил: Я над ней, может быть, двадцать лет думал (Н.Фигуровский. Д. И. Менделеев.1834 - 1907гг.). Действительно, можно определенно утверждать, что к открытию периодического закона Д.И.Менделеева привела вся его предшествовавшая научная деятельность. Начало было положено уже в его первых работах, посвященным изоморфизму и удельным объемам. Первыми элементами, выделяющимися среди других своей индивидуальностью, на которые обратил внимание Д.И.Менделеев, были кремний и углерод. Общие формулы важнейших бинарных соединений углерода и кремния были тождественны, но при изучении зависимости свойств их соединений от состава выявились следующие различия: в составе - определенные соединения характерны для углерода, а неопределенные - для кремния; в строении соединений - наличие устойчивых радикалов и гомоцепей, а также ненасыщенных или непредельных соединений у углерода и гетероцепей у кремния. Это приводило к существенным различиям и в свойствах большинства соединений этих двух элементов. Ученого заинтересовало, какие элементы еще, кроме кремния, способны образовывать неопределенные соединения. Ими оказались, в первую очередь, бор и фосфор. Говоря о способности разных элементов образовывать соли и подчеркивая неопределенность состава многих соединений, Д.И.Менделеев отмечал в 1864г.: Неопределенные соединения суть соединения по сходству (растворы, сплавы, изоморфные смеси образуются преимущественно сходными телами), а истинные химические соединения суть соединения по различию - соединения тел с далекими свойствами (М. Младенцев. Д. И. Менделеев. Его жизнь и деятельность).

На основе изучения кристаллических форм соединений и их связи с составом Д.И.Менделеев пришел к выводу о возможном подчинении индивидуального (состав) определенного соединения общему (одинаковая кристаллическая форма, присущая нескольким соединениям). Действительно, число типов кристаллических форм значительно уступает числу возможных химических соединений. Изучая явление изоморфизма, Д.И.Менделеев сделал еще один вывод о соотношении индивидуального и общего: некоторые соединения двух различных элементов оказывались изоморфными. Но эта изоморфность проявлялась не для всех ступеней окисления сравниваемых соединений, а лишь для некоторых. Кроме того, было замечено, что образование изоморфных смесей возможно и в случае, когда концентрация одного из веществ заметно уступает концентрации другого. Также Д.И.Менделеев обратил внимание на существование полимерного изоморфизма и на ряд K2O, Na2O, MgO, FeO, Fe2O3, Al2O3, SiO2, где оксиды поставлены по степени усиления кислотных свойств. Это положение он сопроводил таким комментарием: При замещении группами сумма тел, стоящих по краям, замещается суммою тел, заключающихся между ними.

Рассмотрение этих вопросов привело Д.И.Менделеева к поиску связи между классами соединений или их рядами, имеющими общие формулы. Причину различия между ними он видел в природе элементов.

В результате своих исследований Д.И.Менделеев сделал вывод о том, что взаимоотношения разнообразных свойств элементов характеризуются категориями общего (единого), специфического (особенного) и индивидуального (единичного). Общие свойства - это свойства, относящиеся, прежде всего, к понятию элемент и являющиеся едиными конкретными характеристиками атома как целого. Такие свойства Д.И.Менделеев называл коренными, и первым из них он считал атомный вес (атомную массу) элемента. Что касается свойств соединений, то они могут быть обобщены в рамках определенной совокупности соединений, причем в основу можно положить разнообразные критерии. Такие свойства называют специфическими (особенными), например металлические и неметаллические свойства простых веществ, кислотно-основные свойства соединений, т.д. Под индивидуальными понимают те уникальные свойства, которые отличают два элемента-аналога или два соединения одного класса, например различная растворимость сульфатов магния и кальция и т.д. Отсутствие необходимых данных о внутреннем строении молекул и атомов заставило Д.И.Менделеева рассматривать в своей работе Удельные объемы такие свойства, как атомные и молекулярные объемы. Эти свойства вычислялись из свойств общих (атомная и молекулярная масс) и конкретных свойств соединений (плотность простого или сложного вещества). Анализируя характер изменения таких свойств, Д.И.Менделеев подчеркивал, что закономерности изменения удельных весов и атомных объемов в рядах элементов нарушаются теми изменениями в физической и химической природе элементов, которые связаны с количеством атомов, входящих в молекулу, и качеством атомов или формой химических соединений. Таким образом, такие свойства хотя и были связаны с общими свойствами, но неизбежно оказывались в числе специфических - отражали объективные различия в природе элементов. Это представление о трех типах свойств, их взаимосвязи между собой и путях отыскания закономерностей общего характера и индивидуальных проявлений легло в дальнейшем в основу учения о периодичности.

Итак, подводя итог всему выше изложенному, мы можем сказать о том, что к середине XIX века вопрос о систематизации накопленного материала составлял в химии, как впрочем, и в любой другой науке, одну из основных задач. Простые и сложные вещества изучались в соответствии с принятыми в то время в науке классификациями: во-первых - по физическим свойствам, во-вторых - по химическим свойствам. Рано или поздно необходимо было попытаться связать обе классификации воедино. Таких попыток еще до Д.И.Менделеева было сделано немало. Но ученые, пытавшиеся обнаружить какие-то численные закономерности при сопоставлении атомных весов элементов, игнорировали химические свойства и другие связи между элементами. В результате они не только не смогли прийти к периодическому закону, но даже не смогли устранить несообразности при сопоставлениях. Действительно, перечисленные попытки Одлинга, Ньюлэндса, Шанкуртуа, Мейера и других авторов представляют собой лишь гипотетические схемы, содержащие только намек на наличие внутренних взаимосвязей свойств элементов, лишенные признаков научной теории и тем более закона природы. Недочеты, имевшиеся во всех этих построениях, вызывали сомнение в правильности идеи о существовании всеобщей связи между элементами даже и у самих авторов. Тем не менее, Д.И.Менделеев замечает в Основах химии, что в построениях де Шанкуртуа и Ньюлэндса видны некоторые зародыши периодического закона. Задача разработать классификацию элементов на основе всей совокупности сведений о составе, свойствах, иногда и строении соединений выпала на долю Д.И.Менделеева. Изучение взаимосвязи свойств с составом заставило его проанализировать сначала свойства отдельных элементов (проявилось в изучении изоморфизма, удельных объемов, в сопоставлении свойств углерода и кремния), затем естественных групп (атомные массы и химические свойства) и всех классов соединений (совокупность физико-химических свойств), включая простые вещества. А толчком к поискам такого рода стали работы Дюма. Таким образом, мы с полным правом можем утверждать, что в своей работе Д.И.Менделеев не имел соавторов, а имел лишь предшественников. И в отличие от своих предшественников Д.И.Менделеев не искал частных закономерностей, а стремился решить общую проблему принципиального характера. При этом, опять-таки, в отличие от своих предшественников, оперировал с проверенными количественными данными, и лично экспериментально проверял сомнительные характеристики элементов.

Открытие периодического закона

Открытие периодического закона химических элементов - явление не обычное в истории науки, а, пожалуй, исключительное. Естественно поэтому, что интерес вызывает как возникновение самой идеи о периодичности свойств химических элементов, так и творческий процесс разработки этой идеи, ее воплощение во всеобъемлющий закон природы. В настоящее время, основываясь на собственных свидетельствах Д.И.Менделеева, а также на опубликованных материалах и документах, можно с достаточной достоверностью и полнотой восстановить основные этапы творческой деятельности Д.И.Менделеева, связанной с разработкой системы элементов.

В 1867г. Дмитрий Иванович был назначен профессором химии Петербургского университета. Заняв, таким образом, кафедру химии в столичном университете, т.е. став, по существу, лидером университетских химиков России, Менделеев принял все зависящие от него меры по существенному улучшению преподавания химии в Петербургском и других русских университетах. Важнейшей и неотложной задачей, возникшей перед Дмитрием Ивановичем в этом направлении, было создание учебника химии, отражавшего важнейшие достижения химии того времени. И учебник Г.И.Гесса, и различные переводные издания, которыми пользовались студенты, сильно устарели и, естественно, не могли удовлетворить Д.И.Менделеева. Вот поэтому он и решил написать совершенно новый курс, составленный по его собственному плану. Курс был озаглавлен Основы химии. К началу 1869г. работа над вторым выпуском первой части учебника, посвященном химии углерода и галогенов, подошла к концу и Дмитрий Иванович намеривался без промедления продолжить работу над второй частью. Обдумывая план второй части, Д.И.Менделеев обратил внимание на то, что порядок расположения материала об элементах и их соединениях в уже имеющихся учебных пособиях по химии в значительной степени случаен и не отражает взаимосвязей не только между группами химически несходных элементов, но даже и между отдельными сходными элементами. Размышляя над вопросом о последовательности рассмотрения групп химически несходных элементов, он пришел к выводу, что должен существовать какой-то научно обоснованный принцип, который надо положить в основу плана второй части курса. В поисках такого принципа Д.И.Менделеев решил сопоставить группы химически сходных элементов, чтобы обнаружить искомую закономерность. После нескольких неудачных попыток он написал на карточках символы известных в то время элементов и рядом выписал их основные физико-химические свойства. Комбинируя распределение этих карточек, Д.И.Менделеев обнаружил, что если все известные элементы расположить в порядке возрастания их атомных масс, то возможно выделить группы химически сходных элементов, разделив весь ряд на периоды и поместив их друг под другом, не изменяя порядка расположения элементов. Так 1 марта 1869г. была составлена, вначале фрагментарно, а потом и полностью, первая таблица - система элементов. Вот как рассказывал об этом впоследствии сам Д.И.Менделеев. Меня неоднократно спрашивали: на основании чего, исходя из какой мысли найден был мною и защищаем периодический закон? Приведу здесь посильный ответ. … Посвятив свои силы изучению вещества, я вижу в нем два таких признака, или свойства: массу, занимающую пространство и проявляющуюся в притяжении, а яснее или реальнее всего - в весе, и индивидуальность, выраженную в химических превращениях, а яснее всего - формулированную в представлении о химических элементах. Когда думаешь о веществе, помимо всякого представления о материальных атомах, нельзя для меня избежать двух вопросов: сколько и какого дано вещества, чему и соответствуют понятия массы и химизма. История же науки, касающейся вещества, т.е. химии, приводит волей или неволей к требованию признания не только вечности массы вещества, но и к вечности химических элементов. Поэтому невольно зарождается мысль о том, что между массою и химическими особенностями элементов необходимо должна быть связь, а так как масса вещества, хотя и не абсолютная, а лишь относительная, выражается окончательно в виде атомов, то надо искать функционального соответствия между индивидуальными свойствами элементов и их атомными весами. Искать же чего-нибудь… нельзя иначе, как смотря и пробуя. Вот я и стал подбирать, написав на отдельных карточках элементы с их атомными весами и коренными свойствами, сходные элементы и близкие атомные веса, что быстро и привело к тому заключению, что свойства элементов стоят в периодической зависимости от их атомного веса, причем, сомневаясь во многих неясностях, я ни на минуту не сомневался в общности сделанного вывода, так как случайности допустить было невозможно (Н. Фигуровский. Дмитрий Иванович Менделеев).

Полученную таблицу ученый озаглавил Опыт системы элементов, основанной на их атомном весе и химическом сходстве. Он сразу же увидел, что эта таблица не только дает основу логического плана второй части курса Основы химии, но, прежде всего, выражает важнейший закон природы. Через несколько дней напечатанная таблица (с русскими и французскими заглавиями) была разослана многим видным русским и зарубежным ученым-химикам. Основные положения своего открытия, аргументы в пользу сделанных им выводов и обобщений Д.И.Менделеев излагает в статье Соотношение свойств с атомным весом элементов. Эта работа начинается с обсуждения вопроса о принципах классификации элементов. Ученый дает исторический обзор попыток классификации в XlX веке и приходит к выводу, что в настоящее время нет ни одного общего принципа, выдерживающего критики, могущего служить опорой при суждении об относительных свойствах элементов и позволяющего расположить их в более или менее строгую систему. Только относительно некоторых групп элементов не существует сомнения, что они образуют одно целое, представляют естественный ряд сходных проявлений материи (М. Младенцев. Д. И. Менделеев. Его жизнь и деятельность). Далее, Дмитрий Иванович объясняет причины, побудившие его к изучению отношений между элементами тем, что предприняв составление руководства к химии, названного Основы химии, он должен был остановиться на какой-нибудь системе простых тел, чтобы в распределении их не руководствоваться случайными, как бы инстинктивными побуждениями, а каким-либо определенно-точным началом. Это точное начало, т.е. принцип системы элементов, по заключению Д.И.Менделеева, должно быть основано на величине атомных весов элементов. Сопоставляя затем элементы с наименьшими атомными весами, Менделеев строит первый основополагающий фрагмент периодической системы (прил. таб. 8). Он констатирует, что для элементов с большими атомными весами наблюдаются подобные же соотношения. Этот факт дает возможность сформулировать важнейший вывод, что величина атомного веса определяет природу элемента настолько же, насколько вес частицы определяет свойства и многие реакции сложного тела. После обсуждения вопроса о возможном взаимном расположении всех известных элементов Д.И.Менделеев приводит свою таблицу Опыт системы элементов…. Завершается статья краткими выводами, ставшими основными положениями периодического закона: Элементы, расположенные по величине их атомного веса, представляют явственную периодичность свойств… Сопоставление элементов или групп по величине атомного веса соответствует так называемой атомности их и до некоторой степени различию химического характера… Должно ожидать открытия еще многих неизвестных простых тел, например, сходных с Al и Si элементов с паем 65 - 75… Величина атомного веса элемента иногда может быть исправлена, зная его аналогии. Так, пай Те должен быть не 128, а 123 - 126? (Н. Фигуровский. Дмитрий Иванович Менделеев). Таким образом, статья Соотношение свойств с атомным весом элементов ясно и отчетливо отражает последовательность умозаключений Д.И.Менделеева, приведших к созданию периодической системы элементов, а выводы свидетельствуют, насколько правильно оценивал ученый важность своего открытия с самого начала. Статья была направлена в Журнал Русского химического общества и появилась в печати в мае 1869г. Кроме того, она предназначалась для доклада на очередном собрании Русского химического общества, которое состоялось 18 марта. Так как Д.И.Менделеев в это время отсутствовал, от его имени выступил секретарь Химического общества Н.А.Меншуткин. В протоколах общества осталась сухая запись об этом собрании: Н.Меншуткин сообщает от имени Д.Менделеева опыт системы элементов, основанный на их атомном весе и химическом сходстве. За отсутствием Д.Менделеева обсуждение этого сообщения отложено до следующего заседания (Детская энциклопедия). Ученые, современники Д.И.Менделеева, впервые услышавшие об этой периодической системе элементов, остались к ней равнодушны, не смогли сразу понять новый закон природы, перевернувший впоследствии весь ход развития научной мысли.

Итак, казалось бы, поставленная первоначально задача - найти точное начало, принцип рационального распределения материала во второй части Основ химии - была решена, и Д.И.Менделеев мог продолжать далее работу над курсом. Но теперь внимание ученого целиком захватили система элементов и возникшие новые идеи и вопросы, разработка которых представлялась ему более значительной и важной, чем написание учебного пособия по химии. Увидев в созданной системе закон природы, Дмитрий Иванович целиком переключился на исследования, связанные с некоторыми неясностями и противоречиями в найденной им закономерности.

Эта напряженная работа продолжалась в течение почти двух лет, с 1869г. по 1871г. Результатом проведенных исследований стали такие публикации Д.И.Менделеева, как об атомных объемах элементов (говориться о том, что атомные объемы простых веществ являются периодической функцией от атомных масс); о количестве кислорода в соляных окислах (показано, что высшая валентность элемента в солеобразующем оксиде есть периодическая функция от атомной массы); о месте церия в системе элементов (доказывается, что атомный вес церия, равный 92, не верен и должен быть увеличен до 138, а так же приводится новый вариант системы элементов). Из последующих статей наибольшее значение для развития основных положений периодического закона имели две - Естественная система элементов и применение ее к указанию свойств неоткрытых элементов, вышедшая на русском языке, и Периодическая законность для химических элементов, напечатанная на немецком языке. В них изложены не только все данные по периодическому закону, собранные и полученные Д.И.Менделеевым, но и различные идеи и выводы, еще не публиковавшиеся. Обе статьи как бы завершают огромную исследовательскую работу, проделанную ученым. Именно в этих статьях периодический закон получил окончательное оформление и формулировку.

В начале первой статьи Д.И.Менделеев констатирует, что отдельные факты ранее не укладывались в рамки периодической системы. Так, часть элементов, а именно церитовые элементы, уран и индий, не находили надлежащего места в этой системе. Но …в настоящее время, - пишет далее Д.И.Менделеев, - такие отступления от периодической законности … уже могут быть устранены с гораздо большею полнотою, чем то было возможно в прежнее время (Н. Фигуровский. Дмитрий Иванович Менделеев). Он обосновывает предложенные им места в системе для урана, церитовых металлов, индия и др. Центральное положение в статье занимает таблица периодической системы в более совершенной форме по сравнению с первыми вариантами. Дмитрий Иванович предлагает и новое название - Естественная система элементов, подчеркивая тем самым, что периодическая система представляет собой естественное расположение элементов и ни в чем не носит характера искусственности. В основании системы лежит распределение элементов по величине их атомного веса, при этом тотчас же замечается периодичность. На основании этого составляется для элементов семь групп или семь семейств, которые обозначены в таблице римскими цифрами. Кроме того, некоторые элементы в периодах, начинающихся с калия и рубидия, отнесены к восьмой группе. Далее Д.И.Менделеев характеризует отдельные закономерности в периодической системе, указывая на наличие в ней больших периодов, на различия свойств элементов одной и той же группы, принадлежащие к четным и нечетным рядам. В качестве одной из важных характеристик системы Дмитрий Иванович принимает высшие оксиды элементов и вносит в таблицу типы формул оксидов для каждой группы элементов. Здесь же обсуждается вопрос о типических формулах других соединений элементов, свойствах этих соединений в связи с обоснованием места отдельных элементов в периодической системе. После сопоставления некоторых физико-химических характеристик элементов Д.И.Менделеев ставит вопрос о возможности предсказания свойств еще не открытых химических элементов. Он указывает на то, что в периодической системе бросается в глаза наличие ряда клеток, не занятых известными элементами. Это относится, прежде всего, к пустым клеткам в третьей и четвертой группах элементов-аналогов - бора, алюминия и кремния. Д.И.Менделеев делает смелое допущение о существовании в природе элементов, которые должны в будущем, когда они будут открыты, занять пустующие клетки в таблице. Он предлагает не только условные названия (экабор, экаалюминий, экасилиций), но и на основании их положения в периодической системе описывает, какими физическими и химическими свойствами должны обладать эти элементы. В работе обсуждается вопрос и о возможности существования элементов, способных заполнить другие пустующие клетки таблицы. И, как бы подводя итог сказанному, Д.И.Менделеев пишет о том, что применение предложенной системы элементов к сличению как их самих, так и соединений, образуемых ими, представляет такие выгоды, каких не давала ни одна из точек зрения, до сих пор применяемых в химии.

Вторая обширная работа - О законе периодичности - была задумана ученым в 1871г. Именно в ней предполагалось дать полное и обоснованное изложение открытия для того, чтобы познакомить с ним широкие круги мировой научной общественности. Основную часть этой работы составила статья Периодическая законность химических элементов, опубликованная в Анналах химии и фармации. Статья явилась итогом более чем двухлетней работы ученого. После вводной части, в которой даны некоторые важные определения и, прежде всего, определение понятий элемент и простое тело, а также изложены некоторые общие соображения о свойствах элементов и соединений и возможностях их сопоставлений и обобщений, Д.И.Менделеев в нескольких параграфах рассматривает важнейшие положения периодического закона и выводы из него в связи с проведенными собственными исследованиями. Так, в Сущности закона периодичности на основе сопоставлений атомных весов элементов, формул их окислов и гидратов окисей Дмитрий Иванович констатирует, что между атомными весами и всеми другими свойствами элементов существует тесная закономерная зависимость. Общим признаком закономерного изменения свойств элементов, расположенных в порядке возрастания их атомных весов, является периодичность свойств. Он пишет, что по мере возрастания атомного веса элементы сперва имеют все новые и новые изменчивые свойства, а потом эти свойства вновь повторяются в новом порядке, в новой строке и в ряде элементов и в той же последовательности, как и в предшествовавшем ряде. А потому закон периодичности можно сформулировать следующим образом: свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости (т.е. правильно повторяются) от их атомного веса. Далее высказанное фундаментальное положение иллюстрируется большим числом примеров периодического изменения свойств как элементов, так и образуемых ими соединений. Второй параграф Применение закона периодичности к систематике элементов начинается словами о том, что система элементов имеет значение не только педагогическое, не только облегчает изучение разнообразных фактов, приводя их в порядок и связь, но имеет и чисто научное значение, открывая аналогии и указывая через то новые пути для изучения элементов. Здесь перечисляются способы расчета атомных весов элементов и свойства их соединений на основании положения элементов в периодической системе (бериллий, ванадий, таллий), в частности способ пропорций. В Применении закона периодичности к определению атомных весов мало исследованных элементов обсуждается положение некоторых элементов в периодической системе и описывается метод расчета атомных весов на основе системы элементов. Дело в том, что ко времени открытия периодического закона атомные веса ряда элементов были, как выражается Д.И.Менделеев, установлены на признаках иногда очень шатких. Поэтому некоторые элементы при размещении их в периодической системе только по принятому в то время атомному весу оказывались явно не на месте. Основываясь на рассмотрении комплекса физических и химических свойств таких элементов, Д.И.Менделеев предложил соответствующее их свойствам место в системе, причем в ряде случаев пришлось пересмотреть принятый до тех пор их атомный вес. Так индий, атомный вес которого принимался за 75 и который на этом основании должен был быть помещен во вторую группу, ученый перенес в третью группу, исправив при этом атомный вес на 113. Для урана с атомным весом 120 и положением в третьей группе на основании подробного анализа физических и химических свойств и свойств его соединений было предложено место в шестой группе, а атомный вес удвоен (240). Далее автор рассматривал весьма трудный, особенно в то время, вопрос о размещении в периодической системе редкоземельных элементов - церия, дидима, лантана, иттрия, эрбия. Но решен этот вопрос был только спустя тридцать с лишним лет. Заканчивается эта работа Применением закона периодичности к определению свойств не открытых еще элементов, пожалуй, особенно важным для подтверждения периодического закона. Здесь Д.И.Менделеев указывает, что в некоторых местах таблицы явно недостает нескольких элементов, которые в дальнейшем должны быть открыты. Он предсказывает свойства еще не открытых элементов, прежде всего аналогов бора, алюминия и кремния (экабор, экаалюминий, экасилиций). Эти предсказания свойств не известных еще элементов характеризуют не только научную смелость гениального ученого, основанную на твердой уверенности в открытом им законе, но и силу научного предвидения. Через несколько лет, после открытия галлия, скандия и германия, когда все его предсказания блестяще подтвердились, периодический закон был признан во всем мире. А пока, в первые годы после выхода статьи, эти предсказания остались почти незамеченными ученым миром. Кроме того, в статье был затронут вопрос об исправлениях атомных весов некоторых элементов на основе периодического закона и применению периодического закона к получению дополнительных данных о формах химических соединений элементов.

Итак, к концу 1871г. все основные положения периодического закона и весьма смелые выводы из него, сделанные Д.И.Менделеевым, были опубликованы в систематическом изложении. Эта статья завершила первый и важнейший этап исследований Д.И.Менделеева по периодическому закону, она стала плодом более чем двухлетней титанической работы над решением разнохарактерных проблем, возникших перед ученым после составления им первой таблицы Опыт системы элементов в марте 1869г. В последующие годы Дмитрий Иванович от случая к случаю возвращался к разработке и обсуждению отдельных проблем, связанных с дальнейшим развитием периодического закона, но он уже не занимался длительными систематическими исследованиями в этой области, как это имело место в 1869 - 1871гг. Вот как сам Д.И.Менделеев оценивал в конце 90-х годов свой труд: Это лучший свод моих взглядов и соображений о периодичности элементов и оригинал, по которому писалось потом так много про эту систему. Это причина главная моей научной известности, потому что многое оправдалось гораздо позднее (Р. Добротин. Летопись жизни и деятельности Д. И. Менделеева). В статье разработаны и последовательно изложены все стороны открытого им закона, а также сформулированы важнейшие его приложения. Здесь Д.И.Менделеев дает отточенную, ставшую канонической формулировку периодического закона: … свойства элементов (а, следовательно, и образованных из них простых и сложных тел) находятся в периодической зависимости от их атомного веса (Р. Добротин. Летопись жизни и деятельности Д. И. Менделеева). В этой же статье ученый дает и критерий фундаментальности законов природы вообще: Каждый закон природы получает научное значение только лишь в случае, если он, так сказать, допускает практические следствия, т.е. такие логические выводы, которые объясняют необъясненное и указывают на неизвестные до сих пор явления, и особенно если закон приводит к предсказаниям, которые могут быть проверены опытом. В последнем случае очевидно значение закона и возможно проверить его справедливость, что, по крайней мере, побуждает к разработке новых областей науки (Р. Добротин. Летопись жизни и деятельности Д. И. Менделеева). Применяя этот тезис к периодическому закону, Дмитрий Иванович называет следующие возможности его приложения: к системе элементов; к определению свойств еще неизвестных элементов; к определению атомного веса малоисследованных элементов; к исправлению величин атомных весов; к пополнению сведений о формах химических соединений. Кроме того, Д.И.Менделеев указывает на возможность приложимости периодического закона: к правильному представлению о так называемых молекулярных соединениях; для определения случаев полимерии среди неорганических соединений; к сравнительному изучению физических свойств простых и сложных тел (Р.Добротин. Летопись жизни и деятельности Д. И. Менделеева). Можно сказать, что в этой статье ученый наметил широкую программу исследований по неорганической химии, опирающуюся на учение о периодичности. Действительно, многие важные направления неорганической химии в конце XIX - начале ХХ века фактически развивались по путям, намеченным великим русским ученым - Д.И.Менделеевым, а открытие и последующее признание периодического закона можно рассматривать как завершение и обобщение целого периода в развитии химии.

Триумф периодического закона

Как и всякое другое великое открытие, такое крупнейшее научное обобщение, как периодический закон, имевшее, к тому же глубокие исторические корни, должно было бы вызвать отклики, критику, признание или непризнание, приложения в исследованиях. Но как это ни странно, в первые годы после открытия закона откликов и выступлений химиков, дающих его оценку, фактически не последовало. Во всяком случае, в начале 70-х годов не появилось сколько - ни будь серьезных откликов на статьи Д.И.Менделеева. Химики предпочитали молчать, конечно не потому, что они ничего не слышали об этом законе или не понимали его, а, как объяснял впоследствии такое отношение Э.Резерфорд, просто химики его времени были более заняты собиранием и добыванием фактов, чем размышлением об их соотношении. Однако выступления Д.И.Менделеева не остались совершенно незамеченными, хотя и вызвали неожиданную реакцию со стороны отдельных иностранных ученых. Но все появившееся в иностранных журналах публикации касались не сущности открытия Д.И.Менделеева, а ставили вопрос о приоритете этого открытия. У великого русского ученого было немало предшественников, пытавшихся подойти к решению вопроса о систематизации элементов и, поэтому, когда Д.И.Менделеев показал, что периодический закон - это фундаментальный закон природы, некоторые из них предъявили свои права на приоритет в открытии этого закона. Так, корреспондент Немецкого химического общества в Лондоне Р.Герстель выступил с заметкой, в которой утверждал, что идея Д.И.Менделеева о естественной системе элементов была высказана еще за несколько лет до него В.Одлингом. Несколько ранее появилась книга немецкого химика Х.В.Бломстранда, в которой он предложил классификацию элементов по их аналогии с водородом и кислородом. Все элементы были разделены автором на две большие группы по признаку электрической полярности в духе электрохимической теории И.Я. Берцелиуса. Со значительными искажениями принципы периодической системы были изложены и в брошюре Г.Баумгауэра. Но больше всего публикаций было посвящено системе элементов Л.Мейера, целиком основанной на принципах естественной систематики Д.М.Менделеева, которая, как он утверждал, была опубликована еще в 1864г. Л.Мейер был крупным представителем неорганической химии в Германии в 60 - 80-х годах ХlХ века. Все его работы были посвящены, в основном, изучению физико-химических свойств элементов: атомных масс, теплоемкости, атомных объемов, валентности, изоморфизма и различных способов их определения. Главную цель своих исследований он видел в собирании точных экспериментальных данных (уточнение атомных масс, установление физических констант) и не ставил перед собой широких задач по обобщению накопленного материала в отличие от Д.И.Менделеева, который при изучении различных физико-химических свойств старался отыскать взаимосвязь между всеми элементами, выяснить характер изменения свойств элементов. Этими выступлениями, в сущности, и ограничивается первоначальная реакция ученого мира на открытие периодического закона и на основные статьи о периодическом законе, опубликованные Д.И.Менделеевым в 1869 - 1871гг. В основе своей они были направлены на то, чтобы подвергнуть сомнению новизну и приоритет открытия и вместе с тем использовать основную идею Д.И.Менделеева для собственных построений систем элементов.

Но прошло всего четыре года, и весь мир заговорил о периодическом законе, как о гениальнейшем открытии, об оправдании блестящих предсказаний Д.И.Менделеева. Дмитрий Иванович, с самого начала полностью уверенный в особой научной важности открытого им закона, не мог и предполагать, что уже через несколько лет он станет свидетелем научного триумфа своего открытия. Еще в феврале 1874г. французский химик П.Лекок де Буабодран проводил химическое исследование цинковой обманки с металлургического завода в Пьеррфитте в Пиренеях. Это исследование шло медленно и закончилось открытием в 1875г. нового элемента - галлия, названного в честь Франции, которую древние римляне называли Галлией. Известие об открытии появилось в Докладах Парижской академии наук и в ряде других изданий. Д.И.Менделеев, внимательно следивший за научной литературой, сразу же узнал в новом элементе предсказанный им экаалюминий, несмотря на то, что в первом сообщении автора открытия галлий был описан лишь в самых общих чертах и некоторые его свойства были определены неправильно. Так, предполагалось, что удельный вес экаалюминия 5,9, а удельный вес открытого элемента - 4,7. Д.И.Менделеев отправил Л. Де Буабодрану письмо, в котором не только обращал внимание на свои работы по периодическому закону, но и указал на ошибку при определении удельного веса. Лекок де Буабодран, никогда до этого не слышавший ни о русском ученом, ни об открытом им периодическом законе химических элементов воспринял это выступление с неудовольствием, но затем, познакомившись со статьей Д.И.Менделеева о периодическом законе, повторил свои опыты и действительно оказалось, что предсказанная Д.И.Менделеевым величина удельного веса точно совпала с определенной Л.де Буабодраном опытным путем. Это обстоятельство, конечно, не могло не произвести самого сильного впечатления как на самого Лекока де Буабодрана, так и на весь ученый мир. Таким образом, предвидение Д.И.Менделеева блестяще оправдалось (прил. таб. 5). Вся история открытия и изучения соединений галлия, получившая освещение в литературе того времени, невольно привлекла к себе внимание химиков и стала первым толчком ко всеобщему признанию периодического закона. Спрос на основную работу Д.И.Менделеева Периодическая законность химических элементов, опубликованную в Анналах Либиха, оказался настолько большим, что потребовалось перевести ее на английский и французский языки, а многие ученые стремились внести свой вклад в поиски новых, еще неизвестных элементов, предсказанных и описанных Д.И.Менделеевым. Это В.Крукс, В.Рамзай, Т.Карнелли, Т.Торп, Г.Хартли - в Англии; П.Лекок де Буабодран, Ш.Мариньяк - во Франции; К.Винклер - в Германии; Ю.Томсен - в Дании; И.Ридберг - в Швеции; Б.Браунер - в Чехии и т.д. Их Д.И.Менделеев называл укрепителями закона. В лабораториях различных стран начались химико-аналитические исследования.

К числу таких ученых принадлежал и профессор аналитической химии Упсальского университета Л.Ф.Нильсон. Работая с минералом эвксенитом, содержащим редкоземельные элементы, он получил, кроме основного продукта, какую-то неизвестную ему землю (оксид). При тщательном и подробном изучении этой неизвестной земли в марте 1879г. Нильсон обнаружил новый элемент, основные свойства которого совпадали со свойствами описанного Д.И.Менделеевым в 1871г. экабора. Этот новый элемент был назван скандием в честь Скандинавии, где он был открыт и нашел свое место в третьей группе периодической системы элементов между кальцием и титаном так, как это и было предсказано Д.И.Менделеевым (прил. таб. 6). История открытия экабора-скандия еще раз нагляднейшим образом подтвердила не только смелые предвидения Д.И.Менделеева, но и чрезвычайную важность для науки открытого им периодического закона. Уже после открытия галлия стало совершенно очевидным, что периодический закон представляет собой в полном смысле слова путеводную звезду химии, указывающую, в каком направлении следует вести поиски новых, неизвестных еще химических элементов.

Через несколько лет после открытия скандия, а точнее в 1886г., периодический закон вновь привлек к себе всеобщее внимание. В Германии вблизи Фрейберга в районе горы Химмельсфюрст на серебряном руднике был найден новый неизвестный минерал. Профессор А.Вейсбах, открывший этот минерал, назвал его аргиродитом. Качественный анализ нового минерала был произведен химиком Г.Т.Рихтером, а количественный анализ - известным химиком-аналитиком К.А.Винклером. В ходе исследований Винклер получил неожиданный и странный результат. Оказалось, что суммарное процентное содержание элементов, входящих в состав аргиродита, равно лишь 93%, а не 100%, как это следовало бы. Очевидно, какой-то элемент, содержащийся к тому же в минерале в значительном количестве, был упущен при анализе. Восемь повторных анализов, выполненных с особой тщательностью, дали тот же результат. Винклер предположил, что имеет дело с не открытым еще элементом. Он назвал этот элемент германий и описал его свойства. Тщательное изучение свойств германия и его соединений скоро привело Винклера к несомненному выводу, что новый элемент - экасилиций Д.И.Менделеева (прил. таб. 7). Такое необыкновенно близкое совпадение предсказанных и найденных опытным путем свойств германия поразило ученых, а сам Винклер в одном из сообщений в Немецком химическом обществе сравнил предсказание Д.И.Менделеева с предсказаниями астрономов Адамса и Леверье о существовании планеты Нептун, сделанными только на основании расчетов.

Блестящее подтверждение предсказаний Д.И.Менделеева оказало большое влияние на все дальнейшее развитие химии и всего естествознания. С середины 80-х гг. периодический закон был, безусловно, признан всем ученым миром и вошел в арсенал науки как основа научного исследования. С этого времени на основе периодического закона началось систематическое исследование соединений всех известных элементов и поиски неизвестных, но предвидимых законом соединений. Если до открытия периодического закона ученые, исследовавшие различные, особенно вновь открываемые, минералы, работали в сущности вслепую, не зная, где искать новые, неизвестные элементы и каковы должны быть их свойства, то, основываясь на периодическом законе, открытие новых элементов оказалось возможным совершать почти без всяких неожиданностей. Периодический закон позволил точно и однозначно установить число не открытых еще элементов с атомными весами в пределах от 1 до 238 - от водорода до урана. В течение всего каких-нибудь пятнадцати лет все предсказания русского исследователя исполнились, и на пустующие до тех пор места в системе стали новые элементы с заранее точно вычисленными свойствами. Однако еще при жизни Д.И.Менделеева периодический закон дважды подвергся серьезным испытаниям. Новые открытия казались в начале не только необъяснимыми с точки зрения периодического закона, но даже противоречащими ему. Так, в 90-х годах У.Рамзай и Дж.У.Рэлей открыли целую группу инертных газов. Для Д.И.Менделеева само по себе это открытие не было полной неожиданностью. Он предполагал возможность существования аргона и других элементов - его аналогов - в соответствующих клетках периодической системы. Однако свойства вновь открытых элементов и прежде всего их инертность (нулевая валентность) вызвали серьезные затруднения при размещении новых газов в периодической системе. Казалось, что для этих элементов нет мест в периодической системе и Д.И.Менделеев далеко не сразу согласился с пополнением периодической системы нулевой группой. Но скоро стало очевидным, что периодическая система с честью выдержала испытание и после внесения в нее нулевой группы приобрела еще более стройный и законченный вид. На рубеже XIX и ХХ столетий была открыта радиоактивность. Свойства радиоактивных элементов настолько не соответствовали традиционным представлениям об элементах и атомах, что возникло сомнение в справедливости периодического закона. К тому же число вновь открытых радиоактивных элементов оказалось таким, что возникли, как представлялось, непреодолимые затруднения с размещением этих элементов в периодической системе. Однако вскоре, правда уже после смерти Д.И.Менделеева, возникшие затруднения были полностью устранены, и периодический закон приобрел дополнительные черты и новый смысл, что привело к расширению его научного значения.

В ХХ веке менделеевское учение о периодичности остается одной из основ современных представлений о строении и свойствах вещества. Это учение включает два центральных понятия - о законе периодичности и о периодической системе элементов. Система служит своеобразным графическим выражением периодического закона, который в отличие от многих других фундаментальных законов природы не может быть выражен в виде какого-либо математического уравнения или формулы. На протяжении ХХ века содержание учения о периодичности постоянно расширялось и углублялось. Это и рост числа химических элементов, обнаруженных в природе и синтезированных. Например, европий, лютеций, гафний, рений - стабильные элементы, существующие в земной коре; радон, франций, протактиний - природные радиоактивные элементы; технеций, прометий, астат - синтезированные элементы. Размещение некоторых новых элементов в периодической системе не вызывало затруднений, поскольку существовали закономерные пробелы в определенных ее подгруппах (гафний, рений, технеций, радон, астат, т.д.). Лютеций, прометий, европий оказались членами редкоземельного семейства, и вопрос об их месте стал составной частью проблемы размещения редкоземельных элементов. Проблема места трансактиниевых элементов и сейчас еще является дискуссионной. Таким образом, новые элементы в ряде случаев потребовали дополнительной разработки представлений о структуре периодической системы. Детальное изучение свойств элементов привело к неожиданным открытиям и к установлению новых важных закономерностей. Явление периодичности оказалось гораздо более сложным, чем это представлялось в ХlХ веке. Дело в том, что принцип периодичности, найденный Д.И.Менделеевым для химических элементов, оказался распространенным и на атомы элементов, на атомный уровень организации материи. Периодические изменения свойств элементов объясняются существованием электронной периодичности, повторением сходных типов электронных конфигураций атомов по мере увеличения значений зарядов их ядер. Если на элементном уровне периодическая система представляла обобщение эмпирических фактов, то на атомном уровне это обобщение получило теоретическую основу. Дальнейшее углубление представлений о периодичности шло по двум направлениям. Одно связано с совершенствованием теории периодической системы благодаря появлению квантовой механики. Другое напрямую относится к попыткам систематизации изотопов и разработке ядерных моделей. Именно на этом пути возникло понятие о ядерной (нуклонной) периодичности. Ядерная периодичность носит качественно иной характер по сравнению с электронной (если в атомах действуют кулоновские силы, то в ядрах проявляются специфические ядерные силы). Мы сталкиваемся здесь с еще более глубоким уровнем проявления периодичности - ядерным (нуклонным), характеризующимся многими специфическими чертами.

Итак, история периодического закона представляет интересный пример открытия и дает критерий для суждения о том, что такое открытие. Д.И.Менделеев многократно повторял, что истинный закон природы, дающий возможности для предвидения и предсказания, следует отличать от случайно замеченных закономерностей и правильностей. Открытие предсказанных ученым галлия, скандия и германия продемонстрировало огромное значение научного предвидения, базирующегося на прочной основе теоретических положений и расчетов. Д.И.Менделеев не был пророком. Не интуиция талантливого ученого, не какая-то особая способность предвидеть будущее явилось основой для описания свойств еще не открытых элементов. Лишь непоколебимая уверенность в справедливости и огромном научном значении открытого им периодического закона, понимание значения научного предвидения дали ему возможность выступить перед научным миром со смелыми и казавшимися многим невероятными предсказаниями. Д.И.Менделеев страстно желал, чтобы открытый им всеобщий закон природы стал основой и руководством для дальнейших попыток человечества проникнуть в тайны строения вещества. Он говорил, что законы природы не терпят исключений и поэтому с полной уверенностью высказывал то, что являлось прямым и очевидным следствием из открытого закона. В конце ХlХ и в ХХ веках периодический закон подвергся серьезным испытаниям. Неоднократно казалось, что вновь установленные факты противоречат периодическому закону. Так было при открытии благородных газов и явлений радиоактивности, изотопии и т.д. Трудности возникли с размещением в системе редкоземельных элементов. Но, несмотря ни на что, периодический закон доказал, что он действительно один из основополагающих великих законов природы. На основе периодического закона происходило все дальнейшее развитие химии. На базе этого закона была установлена внутренняя структура атомов и выяснены закономерности их поведения. Периодический закон с полным основанием называют путеводной звездой при изучении химии, при ориентировке в сложнейшем лабиринте беспредельного многообразия веществ и их превращений. Подтверждением этому служит и открытие российских и американских ученых в городе Дубне (Московская область) нового, 118 элемента периодической системы. По словам директора Объединенного института ядерных исследований, член-корреспондента РАН А.Сисакяна ученые увидели этот элемент с помощью физических ускорителей в лабораторных условиях. 118-й элемент на сегодняшний день самый тяжелый из всех элементов периодической системы, существующих на Земле. Это открытие еще раз подтвердило истину, что периодический закон - великий закон природы, открытый Д. И. Менделеевым, остается незыблемым.

Триумф периодического закона был триумфом и для самого Д.И.Менделеева. В 80-х годах он, и ранее хорошо известный среди ученых Западной Европы выдающимися исследованиями, приобрел высокий авторитет во всем мире. Виднейшие представители науки оказывали ему всевозможные знаки уважения, восхищаясь его научным подвигом. Д.И.Менделеев был избран членом многих иностранных академий наук и ученых обществ, получил немало почетных званий, отличий и наград.

В 1869 году великим русским ученым-химиком Д. И. Менделеевым было сделано открытие, определившее дальнейшее развитие не только самой химии, но и многих других наук.

Вся предыстория открытия периодического закона не представляет собой явления, выходящего за рамки обычных историко-научных явлений. В истории науки едва ли можно указать пример появления крупных обобщений, которым не предшествовала бы длительная и более или менее сложная предыстория. Как отмечал сам Д. И. Менделеев, нет ни одного сколько-нибудь общего закона природы, который бы основался сразу. Всегда его утверждению предшествует много предчувствий, а признание закона наступает не с момента зарождения первой мысли о нем и даже не тогда, когда он вполне осознан во всем его значении, а лишь по утверждении его следствий опытами, которые и должны признаваться высшей инстанцией соображений и мнений. Действительно, можно констатировать вначале появление лишь частных, иногда даже случайных наблюдений и сопоставлений. Варианты подобных сопоставлений с одновременным расширением сопоставляемых фактических данных приводят иногда к частным обобщениям, лишенным, однако, основных признаков закона природы. Именно таковы все доменделеевские попытки систематизации элементов, в том числе таблицы Ньюлендса, Одлинга, Мейера, график Шанкуртуа и другие. В отличие от своих предшественников Д. И. Менделеев не искал частных закономерностей, а стремился решить общую проблему принципиального характера. При этом, опять-таки, в отличие от своих предшественников, оперировал с проверенным количественными данными, и лично проверял экспериментально сомнительные характеристики элементов. Можно определенно утверждать, что к открытию периодического закона его привела вся предшествующая научная деятельность, что открытие это явилось завершением более ранних попыток Д. И. Менделеева изучить и сопоставить физические и химические свойства разнообразных веществ, точно сформулировать идею о тесной внутренней связи между различными веществами и прежде всего - между химическими элементами. Если не учитывать ранних исследований ученого по изоморфизму, внутреннему сцеплению в жидкостях, по растворам и т.д., то было бы невозможно объяснить внезапность открытия периодического закона. Нельзя не поражаться гению Д. И. Менделеева, сумевший уловить великое единство в необъятном хаосе, в беспорядке накопленных до него химиками разрозненных фактов и сведений. Он сумел установить естественный закон химических элементов в то время, когда еще почти ничего не было известно о строении вещества.

Итак, к концу ХlХ века в результате открытия периодического закона сложилась следующая картина развития неорганической химии. К концу 90-х годов закон получил всеобщее признание, позволил ученым предвидеть новые открытия и систематизировать накапливающийся экспериментальный материал, сыграл выдающуюся роль в обосновании и дальнейшем развитии атомно-молекулярного учения. Периодический закон стимулировал открытие новых химических элементов. С момента открытия галлия предсказательные способности системы стали очевидными. Но в то же время они были еще ограниченными вследствие незнания физических причин периодичности и определенного несовершенства структуры системы. С открытием на Земле гелия и аргона английский ученый В. Рамзай отважился на предсказание других, неизвестных еще благородных газов - найденных вскоре неона, криптона и ксенона. В периодическую систему, опубликованную в восьмом издании учебника Основы химии в 1906г., Д. И. Менделеев включил 71 элемент. Эта таблица подводила итог огромной работы по открытию, изучению и систематике элементов за 37 лет. Здесь нашли свое место галлий, скандий, германий, радий, торий; пять инертных газов образовали нулевую группу. В свете периодического закона многие понятия общей и неорганической химии приобрели более строгую форму (химический элемент, простое тело, валентность). Фактом своего существования периодическая система во многом способствовала правильной интерпретации результатов, достигнутых при изучении радиоактивности, помогала определять химические свойства обнаруживаемых элементов. Так, без системы не могла бы быть понятна инертная природа эманаций, оказавшихся впоследствии изотопами самого тяжелого благородного газа - радона. Но классические физико-химические методы исследования оказались не в состоянии решить проблемы, связанные с анализом причин различных отступлений от периодического закона, но они в значительной мере подготовили основу для раскрытия физического смысла места элемента в системе. Изучение различных физических, механических, кристаллографических и химических свойств элементов показало их общую зависимость от более глубоких и скрытых для того времени внутренних свойств атомов. Сам Д. И. Менделеев отчетливо сознавал, что периодическая изменяемость простых и сложных тел подчиняется некоторому высшему закону, природу которого, а тем более причины не было еще средств охватить. Науке еще только предстояло решить эту проблему.

В начале ХХ века периодическая система столкнулась с таким серьезным препятствием, как массовое открытие радиоэлементов. Для них не находилось достаточно места в менделеевской таблице. Эта трудность была преодолена спустя шесть лет после смерти ученого благодаря формулировке понятий об изотопии и о заряде ядра атома, численно равном порядковому номеру элемента в периодической системе. Учение о периодичности вступило в новый, физический этап своего развития. Наиболее важным достижением оказалось объяснение физических причин периодического изменения свойств элементов и, как следствие, структуры периодической системы. Именно периодическая система элементов послужила Н. Бору важнейшим источником информации при разработке теории строения атоиов. А создание такой теории означало переход менделеевского учения о периодичности на новый уровень - атомный, или электронный. Стали ясными физические причины проявления химическими элементами и их соединениями самых разнообразных свойств, остававшихся непонятными для химии ХlХ века. На протяжении 20 - 30-х годов были открыты почти все стабильные изотопы химических элементов; в настоящее время их число составляет примерно 280. Кроме того, в природе обнаружено свыше 40 изотопов радиоактивных элементов, синтезировано около 1600 искусственных изотопов. Закономерности распределения элементов в периодической системе позволили объяснить явление изоморфизма - замещение в кристаллических решетках минералов атомов и атомных групп другими атомами и атомными группами.

Огромное значение имеет учение о периодичности в развитии геохимии. Эта наука возникла в последней четверти ХIХ века, когда начали интенсивно изучать проблему распространенности элементов в земной коре и закономерности их распределения в различных рудах и минералах. Периодическая система способствовала выявлению многих геохимических закономерностей. Были выделены определенные поля-блоки, охватывающие сходные в геохимическом отношении элементы, развита идея сходства и различия элементов, расположенных по диагоналям системы. В свою очередь это позволило изучить законы выделения элементов в ходе геологического развития земной коры и их совместного присутствия в природе.

ХХ век называют веком широчайшего использования катализа в химии. И здесь периодическая система служит основой для систематизации веществ с каталитическими свойствами. Так было выяснено, что для гетерогенных реакций окисления-восстановления каталитическим эффектом обладают все элементы побочных подгрупп таблицы. Для реакций кислотно-основного катализа, к которому в промышленных условиях относят, например, крекинг, изомеризацию, полимеризацию, алкилирование, т.д., катализаторами являются щелочные и щелочноземельные металлы: Li, Na, K, Rb, Cs, Ca; в реакциях кислотного - все р-элементы второго и третьего периодов (кроме Ne и Ar), а также Br И J.

На основе ядерного уровня представлений о периодичности решают и проблемы космохимии. Изучение состава метеоритов и лунного грунта, данные, полученные автоматическими станциями на Венере и Марсе показывают, что в состав этих объектов входят те же химические элементы, которые известны и на Земле. Таким образом, закон периодичности применим и для других областей Вселенной.

Можно было бы назвать еще многие направления научных исследований, где периодическая система элементов выступает в качестве необходимого инструмента познания. Не зря в своем докладе на Юбилейном менделеевском съезде, посвященном столетию открытия периодического закона, академик С. И. Вольфкович сказал о том, что периодический закон явился основным рубежом в истории химии. Он явился источником неисчислимых исследований химиков, физиков, геологов, астрономов, философов историков и продолжает разносторонне влиять на биологию, астрономию, технологию и другие науки. А закончить свою работу мне хотелось бы словами немецкого физика и химика В. Мейера, писавшего, что смелость мысли и прозорливость Менделеева будет во все времена вызывать восхищение (Ю. Соловьев. История химии).

Многие изобретения и открытия в науке и технике можно сравнить с историей географических открытий. Как делались географические открытия? Допустим, высаживалась экспедиция на побережье и шла вглубь континента. Что значит «шла вглубь континента»? А именно то и значит – вставали утром, ели и шли шаг за шагом. Миллион шагов – и географическое открытие готово. Для всего остального человечества их описания как чудо. А для них – элементарная ходьба. Главное – высадиться в неисследованном районе. Ну и, конечно, надо быть профессионалом в своем деле. Также и в науке. Почему Менделеев открыл Периодический закон? Прежде всего, потому, что мало кто задумывался о классификации химических элементов. Сколько в 19 веке было высококвалифицированных химиков, прекрасно знавших все свойства открытых к тому времени элементов? Да всего несколько профессоров ведущих европейских университетов. И среди них Менделеев. Менделееву надо было читать курс химии. Но ему очень не нравился хаос знаний о химических элементах. Было выделено 2-3 группы сходных по свойствам элементов, а об остальных надо было рассказывать о каждом отдельно. Сразу надо сказать, что простая мысль – расположить элементы в порядке возрастания атомных весов, тогда не могла сработать. Это сейчас любой школьник может увидеть закономерности изменения химических свойств по мере возрастания атомного веса. Но это стало возможным после открытия Менделеева благодаря накоплению новых экспериментальных данных.

Менделеев выписал основные свойства элементов, включая атомные веса и формулы окислов, на карточки. И стал размышлять, как же их можно сгруппировать. Тогда уже были известны группы щелочных и щелочноземельных металлов. И тут-то он и обнаружил, что элементы этих групп попарно отличаются на одинаковое число единиц атомного веса! Калий 39, кальций 40, натрий 23, магний 24. Это-то и стало главным толчком к открытию периодического закона. Поэтому суть Периодического закона Менделеева в его первичном понимании в том, что есть группы химических элементов со сходными свойствами и эти группы между собой связаны в соответствии с атомными весами. А когда пришла эта мысль, то удалось и все остальные сведения об элементах уложить в единую систему.

В чем же психологический механизм открытия Менделеева? Главное в том, что он, во-первых, был один из немногих химиков, хорошо знавших современную ему химию. А, во-вторых, в том, что он просто поставил себе задачу систематизировать знания о свойствах элементов. Другие европейские профессора химии просто такой задачи себе не ставили. Сам же процесс поиска решения был не очень сложен: у него было понимание, что существуют группы элементов со схожими свойствами, у него было общее понимание, что, несмотря на то, что простое расположение элементов по возрастанию атомного веса в то время не позволяло увидеть четких закономерностей, атомный вес – величина фундаментальная и ее в любом случае надо учитывать. Сочетание этих общих представлений и привело к открытию Периодического закона.

А что касается мифа о том, что Периодическая система Менделееву приснилась, то суть истории такова. После того, как Менделеев открыл свой закон, он набросал первый вариант таблицы, в котором группы располагались горизонтально, а периоды вертикально. Как-то утром он проснулся и понял, что, если сделать наоборот, то есть, расположить периоды горизонтально, а группы – вертикально, то это более четко отразит суть Периодического закона. Вот и вся история с ролью сна в открытии Периодического закона.

Итак, один из путей эффективного мышления состоит в том, что высококвалифицированный специалист начинает глубоко думать в каком-то определенном узком направлении. Он собирает информацию по этому направлению в литературе, ставит эксперименты для проверки в реальности своих умственных идей, делает наблюдения за реальными фактами. Каждый из этих шагов часто почти очевиден для него. Но эта очевидность для него связана с тем, что он только один до этого думал и собирал информацию. Постепенно он приходит к решению проблемы. Для других, не прошедших всего этого пути, его решение может показаться каким-то сверхестественным озарением. Он сам может не помнить осознанно всей длинной истории формирования у него модели проблемы. И конечное решение иногда и для автора кажется возникшим непонятно как. К тому же сам момент получения решения проблемы вызывает радостный восторг, подобный чувству альпиниста, вступающего на вершину. Из этого рождаются всяческие легенды об озарении. Но разве для альпиниста, покорившего сложную вершину, главное – последний шаг, а не тысячи движений при подъеме?


Утверждение атомно-молекулярной теории на рубеже XIIX - XIX веков сопровождалось бурным ростом числа известных химических элементов. Только за первое десятилетие 19 века было открыто 14 новых элементов. Рекордсменом среди первооткрывателей оказался английский химик Гемфри Деви, который за один год с помощью электролиза получил 6 новых простых веществ (натрий, калий, магний, кальций, барий, стронций). А к 1830 году число известных элементов достигло 55.

Существование такого количества элементов, разнородных по своим свойствам, озадачивало химиков и требовало упорядочения и систематизации элементов. Многие учёные занимались поисками закономерностей в списке элементов и добивались определённого прогресса. Можно выделить три наиболее значительные работы, которые оспаривали приоритет открытия периодического закона у Д.И. Менделеева.

Менделеев сформулировал периодический закон в виде следующих основных положений:

  • 1. Элементы, расположенные по величине атомного веса, представляют явственную периодичность свойств.
  • 2. Должно ожидать открытия ещё многих неизвестных простых тел, например, сходных с Al и Si элементов с атомным весом 65 - 75.
  • 3. Величина атомного веса элемента иногда может быть исправлена, зная его аналогии.

Некоторые аналогии открываются по величине веса их атома. Первое положение было известно ещё до Менделеева, но именно он придал ему характер всеобщего закона, предсказав на его основе существование ещё не открытых элементов, изменив атомные веса ряда элементов и расположив некоторые элементы в таблице вопреки их атомным весам, но в полном соответствии с их свойствами (главным образом, валентностью). Остальные положения открыты только Менделеевым и являются логическими следствиями из периодического закона. Правильность этих следствий подтверждалась многими опытами в течение последующих двух десятилетий и позволила говорить о периодическом законе как о строгом законе природы.

Используя эти положения, Менделеев составил свой вариант периодической системы элементов. Первый черновой набросок таблицы элементов появился 17 февраля (1 марта по новому стилю) 1869 года.

А 6 марта 1869 года официальное сообщение об открытии Менделеева сделал профессор Меншуткин на заседании Русского химического общества.

В уста учёного вложили такую исповедь: Вижу во сне таблицу, где все элементы расставлены, как нужно. Проснулся, тотчас записал на клочке бумаги - только в одном месте впоследствии оказалась нужной поправка». Как всё просто в легендах! На разработку и поправку ушло более 30 лет жизни учёного.

Процесс открытия периодического закона поучителен и сам Менделеев рассказывал об этом так: «Невольно зародилась мысль о том, что между массой и химическими свойствами необходимо должна быть связь.

А так как масса вещества, хотя и не абсолютная, а лишь относительная, выражается окончательно в виде весов атомов, то надо искать функциональное соответствие между индивидуальными свойствами элементов и их атомными весами. Искать же что - либо, хотя бы грибы или какую-нибудь зависимость, нельзя иначе, как смотря и пробуя.

Вот я и стал подбирать, написав на отдельных карточках элементы с их атомными весами и коренными свойствами, сходные элементы и близкие атомные веса, что быстро и привело к тому заключению, что свойства элементов стоят в периодической зависимости от их атомного веса, причём, сомневаясь во многих неясностях, я ни минуты не сомневался в общности сделанного вывода, так как случайность допустить не возможно».

В самой первой таблицы Менделеева все элементы до кальция включительно - такие же, как и в современной таблице, за исключением благородных газов. Это можно увидеть по фрагменту страницы из статьи Д.И. Менделеева, содержащей периодическую систему элементов.

Если исходить из принципа увеличения атомных весов, то следующими элементами после кальция должны были быть ванадий, хром и титан. Но Менделеев поставил после кальция знак вопроса, а следом поместил титан, изменив его атомный вес с 52 до 50.

Неизвестному элементу, обозначенному знаком вопроса, был приписан атомный вес А = 45, являющийся средним арифметическим между атомными весами кальция и титана. Затем, между цинком и мышьяком Менделеев оставил место сразу для двух ещё не открытых элементов. Кроме того, он поместил теллур перед йодом, хотя последний имеет меньший атомный вес. При таком расположении элементов все горизонтальные ряды в таблице содержали только сходные элементы, и отчётливо проявлялась периодичность изменения свойств элементов. Последующие два года Менделеев значительно усовершенствовал систему элементов. В 1871 году вышло первое издание учебника Дмитрия Ивановича «Основы химии», в котором приведена периодическая система в почти современном виде.

В таблице образовалось 8 групп элементов, номера групп указывают на высшую валентность элементов тех рядов, которые включены в эти группы, и периоды становятся более близкими к современным, разбитые на 12 рядов. Теперь каждый период начинается активным щелочным металлом и заканчивается типичным неметаллом галогеном.Второй вариант системы дал возможность Менделееву предсказать существование не 4, а 12 элементов и, бросая вызов учёному миру, с изумительной точностью описал свойства трёх неизвестных элементов, которые он назвал экабор (эка на санскрите означает «одно и то же»), экаалюминий и экасилиций. (Галлия - древнеримское название Франции). Учёному удалось выделить этот элемент в чистом виде и изучить его свойства. А Менделеев увидел, что свойства галлия совпадают со свойствами предсказанного им экаалюминия, и сообщил Лекок де Буабодрану, что тот неверно измерил плотность галлия, которая должна быть равна 5,9-6,0 г/см3 вместо 4,7 г/см3. И действительно, более аккуратные измерения привели к правильному значению 5,904 г/см3. Окончательного признания периодический закон Д.И. Менделеева добился после 1886 года, когда немецкий химик К. Винклер, анализируя серебряную руду, получил элемент, который он назвал германием. Это оказывается экасицилий.

Периодический закон и периодическая система элементов.

Периодический закон - один из важнейших законов химии. Менделеев считал, что главной характеристикой элемента является его атомная масса. Поэтому он расположил все элементы в один ряд в порядке увеличения их атомной массы.

Если рассмотреть ряд элементов от Li до F, то можно увидеть, что металлические свойства элементов ослабляются, а неметаллические свойства усиливаются. Аналогично изменяются и свойства элементов в ряду от Na до Cl. Следующий знак К, как Li и Na, является типичным металлом.

Высшая валентность элементов увеличивается от I y Li до V y N (кислород и фтор имеют постоянную валентность, соответственно II и I) и от I y Na до VII y Cl. Следующий элемент К, как Li и Na, имеет валентность I. В ряду оксидов от Li2O до N2O5 и гидроксидов от LiОН до HNO3 основные свойства ослабляются, а кислотные свойства усиливаются. Аналогично изменяются свойства оксидов в ряду от Na2O и NaOH до Cl2O7 и HClO4. Оксид калия К2О, как и оксиды лития и натрия Li2O и Na2O, является основным оксидом, а гидроксид калия КОН, как и гидроксиды лития и натрия LiOH и NaOH, является типичным основанием.

Аналогично изменяются формы и свойства неметаллов от CH4 до HF и от SiH4 до HCl.

Такой характер свойств элементов и их соединений, какой наблюдается при увеличении атомной массы элементов, называется периодическим изменением. Свойства всех химических элементов при увеличении атомной массы изменяются периодически.

Это периодическое изменение называется периодической зависимостью свойств элементов и их соединений от величины атомной массы.

Поэтому Д.И. Менделеев сформулировал открытый им закон так:

· Свойства элементов, а так же формы и свойства соединений элементов находятся в периодической зависимости от величины атомной массы элементов.

Менделеев расположил периоды элементов друг под другом и в результате составил периодическую систему элементов.

Он говорил, что таблица элементов - плод не только его собственного труда, но и усилий многих химиков, среди которых он особо отмечал «укрепителей периодического закона», открывших предсказанные им элементы.

Для создания современной таблицы потребовалась напряженная многолетняя работа тысяч и тысяч химиков и физиков. Если бы Менделеев был сейчас жив, он, глядя на современную таблицу элементов, вполне мог бы повторить слова английского химика Дж.У.Меллора, автора классической 16-томной энциклопедии по неорганической и теоретической химии. Закончив в 1937, после 15-летней работы, свой труд, он написал с признательностью на титульном листе: «Посвящается рядовым огромной армии химиков. Их имена забыты, их работы остались»...

Периодическая система - это классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона. На октябрь 2009 года известно 117 химических элементов (с порядковыми номерами с 1 по 116 и 118), из них 94 обнаружены в природе (некоторые -- лишь в следовых количествах). Остальные23 получены искусственно в результате ядерных реакций - это процесс превращения атомных ядер, происходящий при их взаимодействии с элементарными частицами, гамма-квантами и друг с другом, обычно приводящий к выделению колоссального количества энергии. Первые 112 элементов имеют постоянные названия, остальные -- временные.

Открытие 112-го элемента (самый тяжелый из официальных) признано Международным союзом теоретической и прикладной химии.

Самый стабильный из известных изотопов данного элемента имеет период полураспада 34 секунды. На начало июня 2009 года носит неофициальное имя унунбий, был впервые синтезирован в феврале 1996 года на ускорителе тяжелых ионов в Институте тяжелых ионов в Дармштадте. Первооткрыватели имеют полгода, чтобы предложить новое официальное название для добавления в таблицу (ими уже предлагались Виксхаузий, Гельмгольций, Венусий, Фриший, Штрассманий и Гейзенбергий). В настоящее время известны трансурановые элементы с номерами 113-116 и 118, полученные в Объединенном институте ядерных исследований в Дубне, однако они официально пока не признаны. Распространённее других являются 3 формы таблицы Менделеева: «короткая» (короткопериодная), «длинная» (длиннопериодная) и «сверхдлинная». В «сверхдлинном» варианте каждый период занимает ровно одну строчку. В «длинном» варианте лантаноиды (семейство из 14 химических элементов с порядковыми номерами 58--71, расположенных в VI периоде системы) и актиноиды (семейство радиоактивных химических элементов, состоящее из актиния и 14 подобных ему по своим химическим свойствам) вынесены из общей таблицы, делая её более компактной. В «короткой» форме записи, в дополнение к этому, четвёртый и последующие периоды занимают по 2 строчки; символы элементов главных и побочных подгрупп выравниваются относительно разных краёв клеток. Короткая форма таблицы, содержащая восемь групп элементов, была официально отменена ИЮПАК в 1989 году. Несмотря на рекомендацию использовать длинную форму, короткая форма продолжила приводиться в большом числе российских справочников и пособий и после этого времени. Из современной иностранной литературы короткая форма исключена полностью, вместо неё используется длинная форма. Такую ситуацию некоторые исследователи связывают, в том числе с кажущейся рациональной компактностью короткой формы таблицы, а также со стереотипностью мышления и невосприятием современной (международной) информации.

В 1969 году Теодор Сиборг предложил расширенную периодическую таблицу элементов. Нильсом Бором разрабатывалась лестничная (пирамидальная) форма периодической системы.

Существует и множество других, редко или вовсе не используемых, но весьма оригинальных, способов графического отображения Периодического закона. Сегодня существуют несколько сот вариантов таблицы, при этом учёные предлагают всё новые варианты.

Периодический закон и его обоснование.

Периодический закон позволил привести в систему и обобщить огромный объем научной информации в химии. Эту функцию закона принято называть интегративной. Особо четко она проявляется в структурировании научного и учебного материала химии.

Академик А. Е. Ферсман говорил, что система объединила всю химию в рамки единой пространственной, хронологической, генетической, энергетической связи.

Интегративная роль Периодического закона проявилась и в том, что некоторые данные об элементах, якобы выпадавшие из общих закономерностей, были проверены и уточнены как самим автором, так и его последователями.

Так случилось с характеристиками бериллия. До работы Менделеева его считали трехвалентным аналогом алюминия из-за их так называемого диагонального сходства. Таким образом, во втором периоде оказывалось два трехвалентных элемента и ни одного двухвалентного. Именно на этой стадии Менделеев заподозрил ошибку в исследованиях свойств бериллия, он нашел работу российского химика Авдеева, утверждавшего, что бериллий двухвалентен и имеет атомный вес 9. Работа Авдеева оставалась не замеченной ученым миром, автор рано скончался, по-видимому, получив отравление чрезвычайно ядовитыми бериллиевыми соединениями. Результаты исследования Авдеева утвердились в науке благодаря Периодическому закону.

Такие изменения и уточнения значений и атомных весов, и валентностей были сделаны Менделеевым еще для девяти элементов (In, V, Th, U, La, Ce и трех других лантаноидов).

Еще у десяти элементов были исправлены только атомные веса. И все эти уточнения впоследствии были подтверждены экспериментально.

Прогностическая (предсказательная) функция Периодического закона получила самое яркое подтверждение в открытии неизвестных элементов с порядковыми номерами 21, 31 и 32.

Их существование сначала было предсказано на интуитивном уровне, но с формированием системы Менделеев с высокой степенью точности смог рассчитать их свойства. Хорошо известная история открытия скандия, галлия и германия явилась триумфом менделеевского открытия. Он все предсказания делал на основе им же самим открытого всеобщего закона природы.

Всего же Менделеевым были предсказаны двенадцать элементов.С самого начала Менделеев указал, что закон описывает свойства не только самих химических элементов, но и множества их соединений. Для подтверждения этого достаточно привести такой пример. С 1929 г., когда академик П. Л. Капица впервые обнаружил неметаллическую проводимость германия, во всех странах мира началось развитие учения о полупроводниках.

Сразу стало ясно, что элементы с такими свойствами занимают главную подгруппу IV группы.

Со временем пришло понимание, что полупроводниковыми свойствами должны в большей или меньшей мере обладать соединения элементов, расположенных в периодах равно удаленной от этой группы (например, с общей формулой типа АзВ).

Это сразу сделало поиск новых практически важных полупроводников целенаправленным и предсказуемым. На таких соединениях основывается практически вся современная электроника.

Важно отметить, что предсказания в рамках Периодической системы делались и после ее всеобщего признания. В 1913г.

Мозли обнаружил, что длина волн рентгеновских лучей, которые получены от антикатодов, сделанных из разных элементов, изменяется закономерно в зависимости от порядкового номера, условно присвоенного элементам в Периодической системе. Эксперимент подтвердил, что порядковый номер элемента имеет прямой физический смысл.

Лишь позднее порядковые номера были связаны со значением положительного заряда ядра. Зато закон Мозли позволил сразу экспериментально подтвердить число элементов в периодах и вместе с тем предсказать места еще не открытых к тому времени гафния (№ 72) и рения (№ 75).

Долгое время шел спор: выделять инертные газы в самостоятельную нулевую группу элементов или считать их главной подгруппой VIII группы.

Исходя из положения элементов в Периодической системе, химики-теоретики во главе с Лайнусом Полингом давно сомневались в полной химической пассивности инертных газов, напрямую указывая на возможную устойчивость их фторидов и оксидов.

Но только в 1962 г. американский химик Нил Бартлетт впервые осуществил в самых обычных условиях реакцию гексафторида платины с кислородом, получив гексафтороплати-нат ксенона XePtF^, а за ним и другие соединения газов, которые теперь правильнее называть благородными, а не инертны.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Биография

2. Мастер чемоданных дел

Список литературы

Биография

Дмитрий Иванович Менделеев (1834-1907) - великий русский ученый-энциклопедист, химик, физик, технолог, геолог и даже метеоролог. Менделеев обладал удивительно ясным химическим мышлением, он всегда ясно представлял конечные цели своей творческой работы: предвидение и пользу. Он писал: "Ближайший предмет химии составляет изучение однородных веществ, из сложения которых составлены все тела мира, превращений их друг в друга и явлений, сопровождающих такие превращения".

Русский ученый, член - кореспондент Петербургской АН (с 1876 г.). Родился в Тобольске. Окончил Главный педагогический институт в Петербурге (1855 г.). В 1855-1856 гг. - учитель гимназии при Ришельевском лицее в Одессе. В 1857-1890 гг. преподавал в Петербургском университете (с 1865 г. - профессор), одновременно в 1863-1872 гг. - профессор Петербургского технологического института. В 1859-1861 гг. находился в научной командировке в Гейдельберге. В 1890 г. покинул университет из-за конфликта с министром просвещения, который во время студенческих волнений отказался принять от Менделеева петицию студентов. С 1892 г. - ученый-хранитель Депо образцовых гирь и весов, которое в 1893 г. по его инициативе было преобразовано в Главную палату мер и весов (с 1893 г. - управляющий).

Научные работы относятся преимущественно к той дисциплине, которую называют общей химией, а также к физике, химической технологии, экономике, сельскому хозяйству, метрологии, географии, метеорологии.

Исследовал (1854-1856 гг.) явления изоморфизма, раскрывающие отношения между кристаллической формой и химическим составом соединений, а также зависимость свойств элементов от величины их атомныхобъемов. Открыл (1860 г.) "температуру абсолютного кипения жидкостей", или критическую.

Работая над трудом "Основы химии", открыл (февраль 1869 г.) один из фундаментальных законов природы - Периодический закон химических элементов.

Развил (1869-1871 гг.) идеи периодичности, ввел понятие о месте элемента в Периодической системе как совокупности его свойств в сопоставлении со свойствами других элементов. На этой основе исправил значения атомных масс многих элементов (бериллия, индия, урана и др.).

Предсказал (1870 г.) существование, вычислил атомные массы и описал свойства трех еще не открытых элементов - "экаалюминия" (открыт в 1875 г. и назван галлием), "экабора" (открыт в 1879 г. и назван скандием) и "экасилиция" (открыт в 1885 г. и назван германием). Затем предсказал существование еще восьми элементов, в том числе "двителлура" - полония (открыт в 1898 г.), "экаиода" - астата (открыт в 1942-1943 гг.), "двимарганца" - технеция (открыт в 1937 г.), "экацезия" - Франция (открыт в 1939 г.).

В 1900 г. Менделеев и У. Рамзай пришли к выводу о необходимости включения в Периодическую систему элементов особой, нулевой группы благородных газов. Помимо выявившейся необходимости исправления атомных масс элементов, уточнения формул оксидов и валентности элементов в соединениях, Периодический закон направил дальнейшие работы химиков и физиков на изучение строения атомов, установление причин периодичности и физического смысла закона.

Менделеев систематически занимался изучением растворов и изоморфных смесей. Сконструировал (1859 г.) пикнометр - прибор для определения плотности жидкости. Создал (1865-1887 гг.) гидратную теорию растворов. Развил идеи о существовании соединений переменного состава.

Исследуя газы, нашел (1874 г.) общее уравнение состояния идеального газа, включающее как частность зависимость состояния газа от температуры, обнаруженную (1834 г.) физиком Б. П. Э. Клапейроном (уравнение Клапейрона-Менделеева).

Выдвинул (1877 г.) гипотезу происхождения нефти из карбидов тяжелых металлов; предложил принцип дробной перегонки при переработке нефтей.

Выдвинул (1880 г.) идею подземной газификации углей.

Занимался вопросами химизации сельского хозяйства. Совместно с И. М. Чельцовым принимал участие (1890-1892 гг.) в разработке бездымного пороха. Создал физическую теорию весов, разработал конструкции коромысла, точнейшие методы взвешивания.

Член многих академий наук и научных обществ. Один из основателей Русского физико-химического общества (1868 г.). В его честь назван элемент № 101 - менделевий.

АН СССР учредила (1962 г.) премию и Золотую медаль им. Д. И. Менделеева за лучшие работы по химии и химической технологии.

Менделеев и Периодический закон.

За четыре года до открытия Периодического закона Д.И. Менделеев, наконец, обрел спокойствие в семейных делах и уверенность в своих действиях. В 1865 году он купил имение Боблово недалеко от Клина и получил возможность заниматься агрохимией, которой тогда увлекался, и отдыхать там с семьей каждое лето.

В 1867 году Менделеев стал заведовать кафедрой общей и неорганической химии физико-математического факультета Петербургского университета, а в конце года ему предоставили долгожданную университетскую квартиру. В мае 1868 года у Менделеевых родилась любимая дочь Ольга.

Жизнь не всегда была благосклонна к Менделееву: были в ней и разрыв с невестой, и недоброжелательность коллег, неудачный брак и затем развод... Два года (1880 и 1881) были очень тяжелыми в жизни Менделеева. В декабре 1880 года Петербургская академия наук отказала ему в избрании академиком: "за" проголосовало девять, а "против" - десять академиков. Особенно неблаговидную роль при этом сыграл секретарь академии некто Веселовский. Он откровенно заявил: "Мы не хотим университетских. Если они и лучше нас, то нам все-таки их не нужно".

В 1881 году с большим трудом был расторгнут брак Менделеева с первой женой, совершенно не понимавшей мужа и упрекавшей его в отсутствии внимания.

2. Мастер чемоданных дел

Любимым занятием на досуге у Менделеева в течение многих лет было изготовление чемоданов и рамок для портретов. Припасы для этих работ он закупал в Гостином дворе. Однажды, выбирая нужный товар, Менделеев услыхал за спиной вопрос одного из покупателей:

- "Кто этот почтенный господин?"

- "Таких людей знать надо, - с уважением в голосе ответил приказчик. - Это мастер чемоданных дел Менделеев".

В 1895 году Менделеев ослеп, но продолжал руководить Палатой мер и весов. Деловые бумаги ему зачитывали вслух, распоряжения он диктовал секретарю, а дома вслепую продолжал клеить чемоданы. Профессор И. В. Костенич за две операции удалил катаракту, и вскоре зрение вернулось…

Но вернемся к 1867 году.

Зимой 1867-68 года Менделеев начал писать учебник "Основы химии" и сразу столкнулся с трудностями систематизации фактического материала. К середине февраля 1869 года, обдумывая структуру учебника, он постепенно пришел к выводу, что свойства простых веществ (а это есть форма существования химических элементов в свободном состоянии) и атомные массы элементов связывает некая закономерность.

Менделеев многого не знал о попытках его предшественников расположить химические элементы по возрастанию их атомных масс и о возникающих при этом казусах. Например, он не имел почти никакой информации о работах Шанкуртуа, Ньюлендса и Мейера.

Решающий этап его раздумий наступил 1 марта 1869 года (14 февраля по старому стилю). Днем раньше Менделеев написал прошение об отпуске на десять дней для обследования артельных сыроварен в Тверской губернии: он получил письмо с рекомендациями по изучению производства сыра от А. И. Ходнева - одного из руководителей Вольного экономического общества.

В Петербурге в этот день было пасмурно и морозно. Под ветром поскрипывали деревья в университетском саду, куда выходили окна квартиры Менделеева. Еще в постели Дмитрий Иванович выпил кружку теплого молока, затем встал, умылся и пошел завтракать. Настроение у него было чудесное.

Неожиданная мысль.

За завтраком Менделееву пришла неожиданная мысль: сопоставить близкие атомные массы различных химических элементов и их химические свойства.

Недолго думая, на обратной стороне письма Ходнева он записал символы хлора Cl и калия K с довольно близкими атомными массами, равными соответственно 35,5 и 39 (разница всего в 3,5 единицы). На том же письме Менделеев набросал символы других элементов, отыскивая среди них подобные "парадоксальные" пары: фтор F и натрий Na, бром Br и рубидий Rb, иод I и цезий Cs, для которых различие масс возрастает с 4,0 до 5,0, а потом и до 6,0. Менделеев тогда не мог знать, что "неопределенная зона" между явными неметаллами и металлами содержит элементы - благородные газы, открытие которых в дальнейшем существенно видоизменит Периодическую систему.

После завтрака Менделеев закрылся в своем кабинете. Он достал из конторки пачку визитных карточек и стал на их обратной стороне писать символы элементов и их главные химические свойства.

Через некоторое время домочадцы услышали, как из кабинета стало доноситься: "У-у-у! Рогатая. Ух, какая рогатая! Я те одолею. Убью-у!" Эти возгласы означали, что у Дмитрия Ивановича наступило творческое вдохновение.

Менделеев перекладывал карточки из одного горизонтального ряда в другой, руководствуясь значениями атомной массы и свойствами простых веществ, образованных атомами одного и того же элемента. В который раз на помощь ему пришло доскональное знание неорганической химии. Постепенно начал вырисовываться облик будущей Периодической системы химических элементов.

Так, вначале он положил карточку с элементом бериллием Be (атомная масса 14) рядом с карточкой элемента алюминия Al (атомная масса 27,4), по тогдашней традиции приняв бериллий за аналог алюминия. Однако затем, сопоставив химические свойства, он поместил бериллий над магнием Mg. Усомнившись в общепринятом тогда значении атомной массы бериллия, он изменил ее на 9,4, а формулу оксида бериллия переделал из Be 2 O 3 в BeO (как у оксида магния MgO). Кстати, "исправленное" значение атомной массы бериллия подтвердилось только через десять лет. Так же смело действовал он и в других случаях.

Постепенно Дмитрий Иванович пришел к окончательному выводу, что элементы, расположенные по возрастанию их атомных масс, выказывают явную периодичность физических и химических свойств.

В течение всего дня Менделеев работал над системой элементов, отрываясь ненадолго, чтобы поиграть с дочерью Ольгой, пообедать и поужинать.

Вечером 1 марта 1869 года он набело переписал составленную им таблицу и под названием "Опыт системы элементов, основанной на их атомном весе и химическом сходстве" послал ее в типографию, сделав пометки для наборщиков и поставив дату "17 февраля 1869 года" (это по старому стилю).

Так был открыт Периодический закон, современная формулировка которого такова:

Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от заряда ядер их атомов.

Менделееву тогда было всего 35 лет.

Отпечатанные листки с таблицей элементов Менделеев разослал многим отечественным и зарубежным химикам и только после этого выехал из Петербурга для обследования сыроварен.

До отъезда он еще успел передать Н. А. Меншуткину, химику-органику и будущему историку химии, рукопись статьи "Соотношение свойств с атомным весом элементов" - для публикации в Журнале Русского химического общества и для сообщения на предстоящем заседании общества.

18 марта 1869 года Меншуткин, который был в то время делопроизводителем общества, сделал от имени Менделеева небольшой доклад о Периодическом законе. Доклад сначала не привлек особого внимания химиков, и Президент русского химического общества, академик Николай Зинин (1812-1880) заявил, что Менделеев делает не то, чем следует заниматься настоящему исследователю. Правда, через два года, прочтя статью Дмитрия Ивановича "Естественная система элементов и применение ее к указанию свойств некоторых элементов", Зинин изменил свое мнение и написал Менделееву: "Очень, очень хорошо, премного отличных сближений, даже весело читать, дай Бог Вам удачи в опытном подтверждении Ваших выводов. Искренне Вам преданный и глубоко Вас уважающий Н. Зинин".

3. Так что же такое периодичность?

Это повторяемость химических свойств простых веществ и их соединений при изменении порядкового номера элемента Z и появление у ряда свойств максимумов и минимумов, в зависимости от значения порядкового (атомного) номера элемента.

Например, что позволяет объединить в одну группу все щелочные элементы? менделеев периодический закон химия

Прежде всего, повторяемость через некоторые интервалы значений Z электронной конфигурации. Атомы всех щелочных элементов имеют на внешней атомной орбитали всего один электрон, и поэтому в своих соединениях проявляют одну и ту же степень окисления, равную +I. Формулы их соединений однотипны: у хлоридов MCl, у карбонатов - М 2 СO 3 , у ацетатов - CH 3 COOM и так далее (здесь буквой M обозначен щелочной элемент).

Менделееву после открытия Периодического закона предстояло сделать еще многое. Причина периодического изменения свойств элементов оставалась неизвестной, не находила объяснения и сама структура Периодической системы, где свойства повторялись через семь элементов у восьмого. Однако с этих чисел был снят первый покров таинственности: во втором и третьем периодах системы находилось тогда как раз по семь элементов.

Не все элементы Менделеев разместил в порядке возрастания атомных масс; в некоторых случаях он больше руководствовался сходством химических свойств. Так, у кобальта Co атомная масса больше, чем у никеля Ni, у теллура Te она также больше, чем у иода I, но Менделеев разместил их в порядке Co - Ni, Te - I, а не наоборот. Иначе теллур попадал бы в группу галогенов, а иод становился родственником селена Se.

Самое же важное в открытии Периодического закона - предсказание существования еще не открытых химических элементов. Под алюминием Al Менделеев оставил место для его аналога "экаалюминия", под бором B - для "экабора", а под кремнием Si - для "экасилиция". Так назвал Менделеев еще не открытые химические элементы. Он даже дал им символы El, Eb и Es.

По поводу элемента "экасилиция" Менделеев писал: "Мне кажется, наиболее интересным из несомненно недостающих металлов будет тот, который принадлежит к IV группе аналогов углерода, а именно, к III ряду. Это будет металл, следующий тотчас же за кремнием, и потому назовем его экасилицием". Действительно, этот еще не открытый элемент должен был стать своеобразным "замкОм", связывающим два типичных неметалла - углерод C и кремний Si - с двумя типичными металлами - оловом Sn и свинцом Pb.

Не все зарубежные химики сразу оценили значение открытия Менделеева. Уж очень многое оно меняло в мире сложившихся представлений.

Так, немецкий физикохимик Вильгельм Оствальд, будущий лауреат Нобелевской премии, утверждал, что открыт не закон, а принцип классификации "чего-то неопределенного". Немецкий химик Роберт Бунзен, открывший в 1861 году два новых щелочных элемента, рубидий Rb и цезий Cs, писал, что Менделеев увлекает химиков "в надуманный мир чистых абстракций".

Профессор Лейпцигского университета Герман Кольбе в 1870 году назвал открытие Менделеева "спекулятивным".

Кольбе отличался грубостью и неприятием новых теоретических воззрений в химии. В частности, он был противником теории строения органических соединений и в свое время резко обрушился на статью Якоба Вант-Гоффа "Химия в пространстве". Позднее Вант-Гофф за свои исследования стал первым Нобелевским лауреатом. А ведь Кольбе предлагал таких исследователей, как Вант-Гофф, "исключить из рядов настоящих ученых и зачислить их в лагерь спиритов"!

С каждым годом Периодический закон завоевывал все большее число сторонников, а его открыватель - все большее признание.

В лаборатории Менделеева стали появляться высокопоставленные посетители, в том числе даже великий князь Константин Николаевич, управляющий морским ведомством.

Наконец, пришло время триумфа. В 1875 году французский химик Поль-Эмиль Лекок де Буабодран открыл в минерале вюртците - сульфиде цинка ZnS - предсказанный Менделеевым "экаалюминий" и назвал его в честь своей родины галлием Ga (латинское название Франции - "Галлия").

Он писал: "Я думаю, нет необходимости настаивать на огромном значении подтверждения теоретических выводов господина Менделеева".

Заметим, что в названии элемента есть намек и на имя самого Буабодрана. Латинское слово "галлус" означает петух, а по-французски петух - "ле кок". Это слово есть и в имени первооткрывателя. Что имел в виду Лекок де Буабодран, когда давал название элементу - себя или свою страну - этого, видимо, уже никогда не выяснить.

Менделеев точно предсказал свойства экаалюминия: его атомную массу, плотность металла, формулу оксида El 2 O 3 , хлорида ElCl 3 , сульфата El 2 (SO 4) 3 . После открытия галлия эти формулы стали записывать как Ga 2 O 3 , GaCl 3 и Ga 2 (SO 4) 3 .

Менделеев предугадал, что это будет очень легкоплавкий металл, и действительно, температура плавления галлия оказалась равной 29,8 о С. По легкоплавкости галлий уступает только ртути Hg и цезию Cs.

В 1879 году шведский химик Ларс Нильсон открыл скандий, предсказанный Менделеевым как экабор Eb. Нильсон писал: "Не остается никакого сомнения, что в скандии открыт экабор.

Так подтверждаются нагляднейшим образом соображения русского химика, которые не только дали возможность предсказать существование скандия и галлия, но и предвидеть заранее их важнейшие свойства".

Скандий получил название в честь родины Нильсона Скандинавии, а открыл он его в сложном минерале гадолините, имеющем состав Be 2 (Y,Sc) 2 FeO 2 (SiO 4) 2 .

В 1886 году профессор Горной академии во Фрайбурге немецкий химик Клеменс Винклер при анализе редкого минерала аргиродита состава Ag 8 GeS 6 обнаружил еще один элемент, предсказанный Менделеевым. Винклер назвал открытый им элемент германием Ge в честь своей родины, но это почему-то вызвало резкие возражения со стороны некоторых химиков.

Они стали обвинять Винклера в национализме, в присвоении открытия, которое сделал Менделеев, уже давший элементу имя "экасилиций" и символ Es. Обескураженный Винклер обратился за советом к самому Дмитрию Ивановичу. Тот объяснил, что именно первооткрыватель нового элемента должен дать ему название.

Предугадать существование группы благородных газов Менделеев не мог, и им поначалу не нашлось места в Периодической системе.

Открытие аргона Ar английскими учеными У. Рамзаем и Дж. Релеем в 1894 году сразу же вызвало бурные дискуссии и сомнения в Периодическом законе и Периодической системе элементов.

Менделеев вначале посчитал аргон аллотропной модификацией азота и только в 1900 году под давлением непреложных фактов согласился с присутствием в Периодической системе "нулевой" группы химических элементов, которую заняли другие благородные газы, открытые вслед за аргоном. Теперь эта группа известна под номером VIIIА.

В 1905 году Менделеев написал: "По-видимому, периодическому закону будущее не грозит разрушением, а только надстройки и развитие обещает, хотя как русского меня хотели затереть, особенно немцы".

Открытие Периодического закона ускорило развитие химии и открытие новых химических элементов.

Список литературы

Алимарин И.П. Энциклопедия школьника. - М.: «Советская энциклопе- дия», 1975.

Фельдман Ф.Г., Рудзитис Г.Е. Химия. - 3-е изд. - М.: «Просвещение», 1994.

Химия. Большой справочник для школьников и поступающих в вузы. - 2-е изд. - М.: «Дрофа», 1999.

Семененко К.Н. Химия. - 2-е издание. - М.: «Мир», 1972.

Размещено на Allbest.ru

...

Подобные документы

    Открытие Д.И. Менделеевым периодического закона химических элементов. Неорганическая химия с точки зрения периодического закона в труде "Основы химии". Полет на воздушном шаре, наблюдение за затмением. Проблемы освоения Арктики. Другие увлечения ученого.

    презентация , добавлен 29.11.2013

    Биографические сведения о жизни великого ученого Менделеева, его семья, научная деятельность. Открытие Менделеевым периодического закона химических элементов - одного из основных законов естествознания. Его проект арктического экспедиционного ледокола.

    презентация , добавлен 01.10.2012

    Д.И. Менделеев - русский учёный-энциклопедист, профессор, член-корреспондент Императорской Академии наук, автор классического труда "Основы химии". Биография, становление учёного, научная деятельность. Открытие периодического закона химических элементов.

    презентация , добавлен 28.05.2015

    Изучение биографии и жизненного пути ученого Д. Менделеева. Описания разработки стандарта для русской водки, изготовления чемоданов, открытия периодического закона, создания системы химических элементов. Анализ его исследований в области состояния газов.

    презентация , добавлен 16.09.2011

    Исследование истории семьи Д.И. Менделеева - создателя периодического закона химических элементов - одного из основных законов естествознания. Малоизвестные подробности из истории рождения и жизни внучки Менделеева - Наталье Алексеевне Трироговой.

    доклад , добавлен 02.03.2008

    Исторические сведения о Д.И. Менделееве. Биографические сведения. "Мастер чемоданных дел". Общественная и промышленная деятельность. Д.И. Менделеева. Открытие ПСХЭ. Неожиданная мысль. Триумф. Обстоятельства открытия периодического закона.

    реферат , добавлен 26.04.2006

    "Золотой век" мировой культуры. Прогрессивное развитие науки. Периодическая система, или периодическая классификация, химических элементов и ее значение для развития неорганической химии во второй половине XIX века. Таблица Менделеева и ее видоизменение.

    реферат , добавлен 26.02.2011

    Развитие науки в XIX веке, послужившее основой для последующего технического прогресса. Биографические данные и научные открытия великих ученых, проводивших исследования в области физики, химии, астрономии, фармацевтики, биологии, медицины, генетики.

    презентация , добавлен 15.05.2012

    Выдающиеся научные открытия XIX века в области физики, биологии, физиологии человека, психологии, географии, медицины и в других науках. Научные достижения Ж.Б. Ламарка, Н.И. Пирогова, Н.И. Лобачевского, А.Г. Столетова, А.П. Бородина, Ф.А. Бредихина.

    презентация , добавлен 05.05.2014

    Биографические сведения о жизни Д. Менделеева - русского учёного-энциклопедиста. Хроника его творческой жизни. Обоснование Менделеевым главных направлений хозяйственного развития России, изобретение пироколлодийного пороха, его научные труды и учебники.

Введение

Периодический закон и Периодическая система химических элементов Д. И. Менделеева – основа современной химии. Они относятся к таким научным закономерностям, которые отражают явления, реально существующие в природе, и поэтому никогда не потеряют своего значения.

Периодический закон и сделанные на его основе открытия в различных областях естествознания и техники являются величайшим триумфом человеческого разума, свидетельством всё более глубокого проникновения в самые сокровенные тайны природы, успешного преобразования природы на благо человека.

«Редко бывает, чтобы научное открытие оказалось чем-то совершенно неожиданным, почти всегда оно предчувствуется, однако последующим поколениям, которые пользуются апробированными ответами на все вопросы, часто нелегко оценить, каких трудностей это стоило их предшественникам». Д.И. Менделеев.

Цель: Характеризовать понятие периодическая система и периодический закон элементов, периодический закон и его обоснование, дать характеристику структурам периодической системы: подгруппы, периоды и группы. Изучить историю открытия периодического закона и периодической системы элементов.

Задачи: Рассмотреть историю открытия периодического закона и периодической системы. Дать определение периодическому закону и периодической системе. Проанализировать периодический закон и его обоснование. Структуру периодической системы: подгруппы, периоды и группы.

История открытия периодического закона и периодической системы химических элементов

Утверждение атомно-молекулярной теории на рубеже XIIX – XIX веков сопровождалось бурным ростом числа известных химических элементов. Только за первое десятилетие 19 века было открыто 14 новых элементов. Рекордсменом среди первооткрывателей оказался английский химик Гемфри Деви, который за один год с помощью электролиза получил 6 новых простых веществ (натрий, калий, магний, кальций, барий, стронций). А к 1830 году число известных элементов достигло 55.

Существование такого количества элементов, разнородных по своим свойствам, озадачивало химиков и требовало упорядочения и систематизации элементов. Многие учёные занимались поисками закономерностей в списке элементов и добивались определённого прогресса. Можно выделить три наиболее значительные работы, которые оспаривали приоритет открытия периодического закона у Д.И. Менделеева.

В 1860 году состоялся первый Международный химический конгресс, после которого стало ясно, что основной характеристикой химического элемента является его атомный вес. Французский учёный Б. Де Шанкуртуа в 1862 году впервые расположил элементы в порядке возрастания атомных весов и разместил их по спирали вокруг цилиндра. Каждый виток спирали содержал 16 элементов, сходные элементы, как правило, попадали в вертикальные столбцы, хотя были отмечены и значительные расхождения. Работа де Шанкуртуа осталась незамеченной, но выдвинутая им идея сортировки элементов в порядке возрастания атомных весов оказалась плодотворной.

И двумя годами позже, руководствуясь этой идеей, английский химик Джон Ньюлендс разместил элементы в виде таблицы и заметил, что свойства элементов периодически повторяются через каждые семь номеров. Например, хлор по свойствам похож на фтор, калий – на натрий, селен – на серу и т.д. Данную закономерность Ньюлендс назвал «законом октав», практически опередив понятие периода. Но Ньюлендс настаивал на том, что длина периода (равная семи) является неизменной, поэтому его таблица содержит не только правильные закономерности, но и случайные пары (кобальт – хлор, железо – сера и углерод – ртуть).

А вот немецкий учёный Лотар Мейер в 1870 году построил график зависимости атомного объёма элементов от их атомного веса и обнаружил отчётливую периодическую зависимость, причём длина периода не совпадала с законом октав и была переменной величиной.

Во всех этих работах много общего. Де Шанкуртуа, Ньюлендс и Мейер открыли проявление периодичности изменения свойств элементов в зависимости от их атомного веса. Но они не смогли создать единую периодическую систему всех элементов, поскольку в открытых ими закономерностях многие элементы не находили своего места. Никаких серьёзных выводов из своих наблюдений этим учёным так же сделать не удалось, хотя они чувствовали, что многочисленные соотношения между атомными весами элементов являются проявлением какого-то общего закона.

Этот общий закон был открыт великим русским химиком Дмитрием Ивановичем Менделеевым в 1869 году. Менделеев сформулировал периодический закон в виде следующих основных положений:

1. Элементы, расположенные по величине атомного веса, представляют явственную периодичность свойств.

2. Должно ожидать открытия ещё многих неизвестных простых тел, например, сходных с Al и Si элементов с атомным весом 65 – 75.

3. Величина атомного веса элемента иногда может быть исправлена, зная его аналогии.

Некоторые аналогии открываются по величине веса их атома. Первое положение было известно ещё до Менделеева, но именно он придал ему характер всеобщего закона, предсказав на его основе существование ещё не открытых элементов, изменив атомные веса ряда элементов и расположив некоторые элементы в таблице вопреки их атомным весам, но в полном соответствии с их свойствами (главным образом, валентностью). Остальные положения открыты только Менделеевым и являются логическими следствиями из периодического закона

Правильность этих следствий подтверждалась многими опытами в течение последующих двух десятилетий и позволила говорить о периодическом законе как о строгом законе природы.

Используя эти положения, Менделеев составил свой вариант периодической системы элементов. Первый черновой набросок таблицы элементов появился 17 февраля (1 марта по новому стилю) 1869 года.

А 6 марта 1869 года официальное сообщение об открытии Менделеева сделал профессор Меншуткин на заседании Русского химического общества.

В уста учёного вложили такую исповедь: Вижу во сне таблицу, где все элементы расставлены, как нужно. Проснулся, тотчас записал на клочке бумаги – только в одном месте впоследствии оказалась нужной поправка». Как всё просто в легендах! На разработку и поправку ушло более 30 лет жизни учёного.

Процесс открытия периодического закона поучителен и сам Менделеев рассказывал об этом так: «Невольно зародилась мысль о том, что между массой и химическими свойствами необходимо должна быть связь. А так как масса вещества, хотя и не абсолютная, а лишь относительная, выражается окончательно в виде весов атомов, то надо искать функциональное соответствие между индивидуальными свойствами элементов и их атомными весами. Искать же что – либо, хотя бы грибы или какую-нибудь зависимость, нельзя иначе, как смотря и пробуя. Вот я и стал подбирать, написав на отдельных карточках элементы с их атомными весами и коренными свойствами, сходные элементы и близкие атомные веса, что быстро и привело к тому заключению, что свойства элементов стоят в периодической зависимости от их атомного веса, причём, сомневаясь во многих неясностях, я ни минуты не сомневался в общности сделанного вывода, так как случайность допустить не возможно».

В самой первой таблицы Менделеева все элементы до кальция включительно – такие же, как и в современной таблице, за исключением благородных газов. Это можно увидеть по фрагменту страницы из статьи Д.И. Менделеева, содержащей периодическую систему элементов.

Если исходить из принципа увеличения атомных весов, то следующими элементами после кальция должны были быть ванадий (А = 51), хром (А = 52) и титан (А = 52). Но Менделеев поставил после кальция знак вопроса, а следом поместил титан, изменив его атомный вес с 52 до 50. Неизвестному элементу, обозначенному знаком вопроса, был приписан атомный вес А = 45, являющийся средним арифметическим между атомными весами кальция и титана. Затем, между цинком и мышьяком Менделеев оставил место сразу для двух ещё не открытых элементов. Кроме того, он поместил теллур перед йодом, хотя последний имеет меньший атомный вес. При таком расположении элементов все горизонтальные ряды в таблице содержали только сходные элементы, и отчётливо проявлялась периодичность изменения свойств элементов.

В последующие два года Менделеев значительно усовершенствовал систему элементов. В 1871 году вышло первое издание учебника Дмитрия Ивановича «Основы химии», в котором приведена периодическая система в почти современном виде. В таблице образовалось 8 групп элементов, номера групп указывают на высшую валентность элементов тех рядов, которые включены в эти группы, и периоды становятся более близкими к современным, разбитые на 12 рядов. Теперь каждый период начинается активным щелочным металлом и заканчивается типичным неметаллом галогеном.

Второй вариант системы дал возможность Менделееву предсказать существование не 4, а 12 элементов и, бросая вызов учёному миру, с изумительной точностью описал свойства трёх неизвестных элементов, которые он назвал экабор (эка на санскрите означает «одно и то же»), экаалюминий и экасилиций. Современные названия их Se, Ga, Ge.

Учёный мир Запада в начале отнёсся к Менделеевской системе и его предсказаниям скептически, но всё изменилось, когда в 1875 году французский химик П. Лекок де Буабодран, исследуя спектры цинковой руды, обнаружил следы нового элемента, который он назвал галлием в честь своей родины (Галлия – древнеримское название Франции)

Учёному удалось выделитьэтот элемент в чистом виде и изучить его свойства. А Менделеев увидел, что свойства галлия совпадают со свойствами предсказанного им экаалюминия, и сообщил Лекок де Буабодрану, что тот неверно измерил плотность галлия, которая должна быть равна 5,9-6,0 г/см3вместо 4,7 г/см3. И действительно, более аккуратные измерения привели к правильному значению 5,904 г/см3.

В 1879 году шведский химик Л. Нильсон при разделении редкоземельных элементов, полученных из минерала гадолинита, выделил новый элемент и назвал его скандием. Это оказывается предсказанный Менделеевым экабор.

Окончательного признания периодический закон Д.И. Менделеева добился после 1886 года, когда немецкий химик К. Винклер, анализируя серебряную руду, получил элемент, который он назвал германием. Это оказывается экасицилий.


Похожая информация.


 

Возможно, будет полезно почитать: