Общая фармакология. Фармакокинетика

При рассмотрении физиологических процессов (разделы 6.6; 7.2.5; Глава 9), определяющих фармакокинетические показатели нами была дана их характеристика. С целью лучшего понимания материала нами повторяются некоторые из вышеназванных параметров, а некоторые рассматриваются впервые.

Константа скорости элиминации (обозначение - Ке1, размерность - ч-1, мин-1) - параметр, характеризующий скорость элиминации препарата из организма путем экскреции и биотрансформации. В многочастевых моделях величина Ке1 обычно характеризует элиминацию препарата из центральной камеры, включающей кровь и ткани, быстро обменивающихся препаратом с кровью. Элиминацию препарата из организма в этом случае характеризует кажущаяся константа элиминации - комплексный параметр (обозначение Р, размерность - ч-1, мин-1), связанный с другими константами модели (Кір см. ниже).

Константа скорости абсорбции (всасывания) (обозначение К01, размерность - ч-1) параметр, характеризующий скорость поступления препарата из места введения в системный кровоток при внесосудистом способе введения.

Константа скорости перехода препарата между частями (камерами) в многочастевых (многокамерных) моделях (обозначение Кф размерность - ч-1, мин-1) параметр, характеризующий скорость выхода препарата из г"-ой камеры в /-ю. Например, в двухчастевой модели существуют две константы скорости перехода - одна характеризует скорость перехода из центральной (первой камеры) в периферическую (вторую) и обозначается /С,2; другая характеризует обратный процесс и обозначается К2Х. Отношение этих констант определяет равновесное распределение препарата. Суммарно кинетика процесса распределения между двумя камерами характеризуется комплексным параметром, который зависит от константы скоростей всех процессов, учитываемых моделью. В рамках двухчастевой модели этот параметр обозначают а, его размерность - ч-1, мин-1.

Константа скорости экскреции (обозначение Ке или Кех, размерность - ч-1, мин-1) параметр, характеризующий скорость выделения препарата с каким-либо экскретом: с мочой, калом, слюной, молоком и др. В рамках линейной модели эта константа должна совпадать по величине с константой скорости элиминации в том случае, если препарат выводится из организма только в неизменном виде одним путем, например, с мочой. В других случаях величина Кех равна доле от Ке1-

Период полу элиминации препарата (обозначение Тх/2, размерность - ч, мин) - время элиминации из организма половины введенной и поступившей дозы препарата. Соответствует времени уменьшения в два раза концентрации препарата в плазме (сыворотке) крови на участке моноэкспотенциального снижения плазменного (сывороточного) уровня препарата, т. е. в Р-фазе.

Величина Т|/2 определяется суммарно экскрецией и биотрансформацией препарата, т. е. его элиминацией. Период полуэлиминации однозначно зависит от константы скорости элиминации: для одночастевой модели - Т1/2 = 0,693/Keh для многочастевой - Т1/2 - 0,693/р.

Период полу абсорбции (полувсасывания) препарата (обозначение Тх/2а, размерность - ч, мин) - время, необходимое для абсорбции (всасывания) из места введения в системный кровоток половины введенной дозы. Параметр используется для описания кинетики препарата в случае его внесосудистого введения и однозначно зависит от константы скорости всасывания препарата.

Период полураспределения препарата (обозначение Тх/2а, размерность - ч, мин) - условный параметр, характеризующий в рамках двухчастевой модели распределение между центральной камерой, включающей плазму крови, и периферической камеры (органы, ткани). Величина Тх/2а соответствует времени достижения уровней препарата, равных 50 % от равновесных концентраций, которые наблюдаются при достижении равновесия между кровью и другими тканями.

Кажущаяся начальная концентрация препарата (обозначение С0 или С°, размерность - ммоль/л, мкг/л, нг/мл и др.) - условный параметр, равный той концентрации, которая получилась бы в плазме крови при условии введения препарата в кровь и мгновенного распределения его по органам и тканям (при анализе одночастевой модели) или в объеме центральной камеры (при анализе дву- и многочастевой моделей). Величина С при линейной кинетике препарата в организме прямопропорциональна дозе препарата.

Стационарная концентрация препарата в плазме крови (обозначение Css, размерность - ммоль/л, мкг/л, нг/мл) - та концентрация, которая устанавливается в плазме (сыворотке) крови при поступлении препарата в организм с постоянной скоростью.

В случае интермиттирующего введения (приема) препарата через одинаковые промежутки времени в одинаковых дозах используют понятие максимальная стационарная концентрация (С™х) и минимальная стационарная концентрация (С™п).

Объем распределения препарата (обозначение Vd или V, размерность - л, мл) - условный параметр, характеризующий степень захвата препарата тканями из плазмы (сыворотки) крови. Величина Vd в рамках одночастевой модели равна такому условному объему жидкости, в котором распределяется вся попавшая в организм доза препарата, чтобы получилась концентрация, равная кажущейся начальной концентрации (С0). Часто объем распределения относят к единице массы тела больного (G, кг) и получают удельный объем распределения (обозначение Ad, размерность - л/кг, мл/г). В много- частевых моделях вводят понятие объем распределения в і-ой камере (обозначение Vh размерность - л, мл). Например, при анализе двухчастевой модели рассчитывают объем первой, центральной камеры (1/), в которую входит и плазма крови. Общий или кинетический объем распределения в таких моделях (обозначение V$, размерность - л, мл) характеризует распределение препарата после достижения состояния квазистационарного равновесия между концентрацией препарата в крови (центральной камере) и других тканях (периферических камерах). Для двухчастевой модели справедливо выражение Кр = (kei/$)/Vu Для этой модели предложено также использовать параметр стационарный объем распределения (обозначение Vss, размерность - л, мл), который пропорционален величине объема распределения в первой камере.

Часто объем распределения называют «кажущимся», что только утяжеляет терминологию, но не вносит дополнительных разъяснений, поскольку условность этого параметра следует из его определения.

Общий клиренс препарата (синонимы: клиренс тела, клиренс плазмы (сыворотки), плазменный (сывороточный) клиренс; обозначение С1, или С1Т, размерность - мл/мин, л/час) - параметр, соответствующий объему тест-ткани, освобождающейся от препарата за единицу времени. В простейшем случае клиренс препарата - это отношение скорости элиминации всеми возможными путями к концентрации лекарства в биологических тканях.

Почечный (ренальный) клиренс препарата (обозначение С/поч, Clr, ClR, размерность - л/ч, мл/мин) - параметр, определяющий скорость элиминации лекарственного препарата из организма путем его экскреции почками. Величина С1Г соответствует (условно) той части объема распределения, из которой препарат элиминирует с мочой в единицу времени.

Внепочечный (экстраренальный) клиренс препарата (обозначение С1еп С/в/поч, С1т, размерность - л/ч, мл/мин) - параметр, характеризующий скорость элиминации из организма препарата другими путями помимо выделения с мочой, в основном за счет биотрансформации (метаболизма) препарата и его экскреции с желчью. Величина С1ег соответствует (условно) той части объема распределения, из которой препарата элиминирует в единицу времени суммарно всеми путями элиминации, кроме экскреции почками.

Площадь под кривой «концентрация-время» (синоним - площадь под фармакокинетической кривой; обозначение AUC или S, размерность - ммоль-ч-л-1, ммоль-мин-л-1, мкг-ч-мл-1, мкг-мин-мл_1, нг-ч-мл-1, нг мин-мл-1 и др.) - на графике в координатах концентрация препарата в плазме (сыворотке) крови, Ср - время после введения препарата, Г, площадь фигуры, ограниченной фармакокинетической кривой и осями координат. AUC связан с другим фармакокинетическим параметром - объемом распределения; AUC обратно пропорциональна общему клиренсу препарата. При линейности кинетики препарата в организме величина AUC пропорциональна общему количеству (дозе) препарата, попавшего в организм. Часто пользуются площадью не под всей фармакокинетической кривой (от нуля до бесконечности по времени), а площадью под частью этой кривой (от нуля до некоторого времени t)\ этот параметр обозначают AUC,.

Время достижения максимальной концентрации (обозначение £тах или /макс, размерность - ч, мин) - время достижения концентрации препарата в крови.

ОМСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ КАФЕДРА ХИМИИЛекция 16. Использование кинетики в
фармации
1.
2.
Константа всасывания. Константа элиминации.
Время полувыведения препарата.
Влияние температуры на скорость химической
реакции. Ускоренный метод определения сроков
годности лекарственного препарата.
Лектор: доцент Григорьева Марина Викторовна

Основной задачей фармакокинетики
является количественное описание с
помощью уравнений кинетики
протекание во времени процессов
всасывания, распределения,
метаболизма и экскреции препаратов.
На этой основе устанавливается связь
между концентрацией инородного
вещества в области его действия и
величиной эффекта.

1. Константа всасывания. Константа элиминации.

Фармакокинетика широко использует
приемы математического моделирования
хорошо известные из биологической
кибернетики. Простейшей моделью
организма с введенной в него дозой
лекарства является сосуд с раствором этого
лекарства. Объем сосуда можно считать
примерно равным объему жидкой среды
организма, в среднем около 7,5 л. Одна из
стенок сосуда полупроницаемая; пропускает
наружу лекарственный препарат и не
пропускает растворитель.

1. Константа всасывания. Константа элиминации.

т, мг
SO г. мин
Фармакокинетика введения и выведения препарата
из организма: а - сосуд, моделирующий жидкую
среду организма с введенным препаратом (доза т0),
б -кинетическая кривая введения и выведения
препарата из организма, Ʈ 1/2- время
полувыведения (20 мин)

1. Константа всасывания. Константа элиминации.

Рассмотрим обычный путь
лекарственного вещества в организме.
Его можно рассматривать как
последовательность двух процессов:
всасывание из желудка в кровь
(характеризуется константой
всасывания kв и выведение
(элиминация) из крови в мочу
(характеризуется константой выведения
kе).

1. Константа всасывания. Константа элиминации.

Желудок


Кровь


Моча

Кинетика изменения массы лекарства в
желудке тж,крови тк и моче тм описывается
системой трех дифференциальных
уравнений, которые составляются для
скорости простых реакций на основе закона
действующих масс:

1. Константа всасывания. Константа элиминации.

dmж
ke mж
d
dmк
ke mж ke mк
d
dmм
ke mк
d

1. Константа всасывания. Константа элиминации.

Графики зависимостей массы от времени
называются кинетическими кривыми.
Содержание лекарства в крови в
зависимости от времени описывается
кривой с максимумом.
Максимальное содержание лекарства в
крови должно быть больше некоторого
минимального (действующего)
значения, но не выше некоторого
максимального (токсичного) значения.

1. Константа всасывания. Константа элиминации.

Уравнение кинетики выведения препарата
(третье уравнение) аналогично уравнению
кинетики реакции первого порядка. Где m0 –
начальная доза препарата.
m m0 e
k e

1. Константа всасывания. Константа элиминации.

Константа элиминации kе, является
характеристикой препарата и для
разных препаратов имеет различные
значения порядка 10-3 – 10-25 с-1.
Время полувыведения инородного
вещества из организма рассчитывают
с помощью выражения:Ʈ½ = 0,69/ kе.

1. Константа всасывания. Константа элиминации.

Времена полувыведения различных лекарств
из организма находятся в пределах порядка
100-10000 с. Это значит, что в организме
лекарство может находиться от нескольких
десятков минут до нескольких часов.
Значение времени полувыведения очень
важно знать врачу, т.к. эта величина
позволяет определить дозировку лекарства и
частоту его приема.

Температурные зависимости скорости
химических реакций подразделяют на:
а -нормальная; б - аномальная; в ферментативная

2. Влияние температуры на скорость реакций

Нормальная зависимость скорости от
температуры выражают эмпирическим
правилом Вант-Гоффа (1884 г), согласно
которому повышение температуры на 10°
увеличивает константу скорости реакции в
2-4 раза.
k 2 1 VT2
k1 2 VT1
T2 T1
10

2. Влияние температуры на скорость реакций

На основе правила Вант-Гоффа
разработан метод «ускоренного
старения лекарственной формы» для
определения срока ее годности.
Препарат хранят при температурах
превышающих обычные температуры
хранения, он быстрее приходит в
негодность. На основе полученных
данных можно предположить какие
процессы и в течение какого времени
будут протекать с лекарством при
обычной температуре хранения.

2. Влияние температуры на скорость реакций

Этот метод позволяет, во-первых,
значительно сократить время,
необходимое для установления срока
годности лекарства в условиях
хранения его при известной
температуре склада и, во-вторых,
определить температуру хранения,
обеспечивающую заданный срок
годности.

2. Влияние температуры на скорость реакций

Для лекарственных форм γ=2, тогда срок
годности можно рассчитать по уравнению:
2 2
T2 T1

Константа скорости элиминации (k el , мин -1) – показывает, какая часть ЛС элиминируется из организма в единицу времени  Kel = A выд /А общ, где А выд – количество ЛС, выделяемое в ед. времени, А общ – общее количество ЛС в организме.

Значение k el обычно находят путем решения фармакокинетического уравнения, описывающего процесс элиминации лекарства из крови, поэтому k el называют модельным показателем кинетики. Непосредственного отношения к планированию режима дозирования k el не имеет, но ее значение используют для расчета других фармакокинетических параметров.

Константа элиминации прямо пропорциональна клиренсу и обратно пропорционально объему распределения (из определения клиренса): Kel=CL/Vd; = час -1 /мин -1 =доля в час.

13. Период полувыведения лекарств, его сущность, размерность, взаимосвязь с другими фармакокинетическими параметрами.

Период полуэлиминации (t ½ , мин) – это время, необходимое для снижения концентрации ЛС в крови ровно наполовину. При этом не играет роли каким путем достигается снижение концентрации – при помощи биотрансформации, экскреции или же за счет сочетания обоих процессов.

Период полуэлиминации определяют по формуле:

Период полувыведения – важнейший фармакокинетический параметр, позволяющий:

б) определить время полной элиминации препарата

в) предсказать концентрацию ЛС в любой момент времени (для ЛС с кинетикой первого порядка)

14. Клиренс как главный параметр фармакокинетики для управления режимом дозирования. Его сущность, размерность и связь с другими фармакокинетическими показателями.

Клиренс (Cl, мл/мин) - объем крови, который очищается от ЛС за единицу времени.

Т.к. плазма (кровь) - «видимая» часть объема распределения, то клиренс – фракция объема распределения, из которой лекарство выделяется в единицу времени. Если обозначить общее количество лекарства в организме через А общ , а количество, которое выделилось через А выд , то:

С
другой стороны, из определения объема распределения следует, что общее количество лекарства в организме составляетА общ = V d C тер/плазма . Подставляя это значение в формулу клиренса, мы получим:

.

Таким образом, клиренс – отношение скорости выведения лекарственного средства к его концентрации в плазме крови.

В таком виде формулу клиренса используют для расчета поддерживающей дозы лекарства (D п ), т.е той дозы лекарственного средства, которая должна скомпенсировать потерю лекарства и поддержать его уровень на постоянном уровне:

Скорость введения = скорость выведения = Cl C тер (доза/мин)

D п = скорость введения  ( - интервал, между приемом лекарства)

Клиренс аддитивен , т.е. элиминация вещества из организма может происходить с участием процессов, идущих в почках, легких, печени и других органах: Cl системный = Cl почечн. + Cl печени + Cl др.

Клиренс связан с периодом полуэлиминации ЛС и объемом распределения : t 1/2 =0,7*Vd/Cl.

15. Доза. Виды доз. Единицы дозирования лекарственных средств. Цели дозирования лекарств, способы и варианты введения, интервал введения.

Действие ЛС на организм в большей степени определяется их дозой.

Доза - количество вещества, введенное в организм за один прием; выражается в весовых, объемных или условных (биологических) единицах.

Виды доз:

а) разовая доза – количество вещества на один прием

б) суточная доза - количество препарата, назначаемое на сутки в один или несколько приемов

в) курсовая доза - общее количество препарата на курс лечения

г) терапевтические дозы - дозы, в которых препарат используют с лечебными или профилактическими целями (пороговые, или минимальные действующие, средние терапевтические и высшие терапевтические дозы).

д) токсические и смертельные дозы – дозы ЛВ, при которых они начинают оказывать выраженные токсические эффекты или вызывать смерть организма.

е) загрузочная (вводная) доза – кол-во вводимого ЛС, которое заполняет весь объем распределения организма в действующей (терапевтической) концентрации: ВД = (Css * Vd)/F

ж) поддерживающая доза – систематически вводимое количество ЛС, которое компенсирует потери ЛС с клиренсом: ПД = (Css * Cl * T)/F

Единицы дозирования ЛС:

1) в граммах или долях грамма ЛС

2) количество ЛС в расчете на 1 кг массы тела (например, 1 мг/кг ) или на единицу поверхности тела (например, 1 мг/м 2 )

Цели дозирования ЛС:

1) определить количество ЛС, необходимое для того, чтобы вызвать нужный терапевтический эффект с определенной длительностью

2) избежать явлений интоксикации и побочных эффектов при введении ЛС

Способы введения ЛС : 1) энтерально 2) парентерально (см. в. 5)

Варианты введения ЛС :

а) непрерывный (путем длительных внутрисосудистых инфузий ЛС капельно или через автоматические дозаторы). При непрерывном введении ЛС его концентрация в организме изменяется плавно и не подвергается значительным колебаниям

б) прерывистое введение (инъекционным или неинъекционным способами) - введение лекарства через определенные промежутки времени (интервалы дозирования). При прерывистом введении ЛС его концентрация в организме непрерывно колеблется. После приема определенной дозы она вначале повышается, а затем постепенно снижается, достигая минимальных значений перед очередным введением лекарства. Колебания концентрации тем значительнее, чем больше вводимая доза лекарства и интервал между введениями.

Интервал введения – интервал между вводимыми дозами, обеспечивающий поддержание терапевтической концентрации вещества в крови.


Элиминации подвергается только та часть вещества, которая находится в крови, и именно эту элиминацию отражает клиренс (Cl). Для того чтобы на основании клиренса судить о скорости удаления вещества не только из крови, но и из организма в целом, необходимо соотнести клиренс со всем тем объемом, в котором находится данное вещество, - то есть с (объемом распределения). Так, если Vp = 10 л, а Сl = 1 л/мин, то за одну минуту удаляется 1/10 общего содержания вещества в организме. Эта величина называется константой скорости элиминации k:

Умножая k на общее содержание вещества в организме, можно для любого момента времени получить абсолютное значение скорости элиминации:

Скорость элиминации = k х ОСО = Cl x С,

где ОСО - общее содержание вещества в организме,

С - сывороточная концентрация вещества в данный момент времени.

Это уравнение справедливо для любых процессов, подчиняющихся кинетике первого порядка. Из него следует, что скорость элиминации в каждый момент пропорциональна общему количеству вещества.

Напротив, Т(1/2) не связан с Cl линейной зависимостью.

Из уравнения

Т(1/2) = (0,693 х Vp) / Cl

От Vp зависит эффективность гемодиализа при отравлении. Если Vp большой (например, у трициклических антидепрессантов ; у дезипрамина он превышает 1500 л), то даже применение диализаторов с высоким клиренсом не может существенно ускорить процесс выведения отравляющего вещества.

Элиминация вещества зависит также от степени его связывания с белками плазмы. Изменение этого связывания может приводить к значительным сдвигам коэффициента экстракции (это справедливо лишь для веществ, которые элиминируются только в свободном виде). То, насколько сильно связывание вещества с белками влияет на элиминацию, определяется соотношением между сродством вещества к белкам плазмы, с одной стороны, и к системам удаления вещества - с другой. Так, почечные канальцевые системы транспорта анионов обладают высоким сродством ко многим лекарственных веществам, и поэтому эти вещества быстро удаляются, даже если значительная часть их пребывает в связанном виде.

Другой пример - чрезвычайно эффективная элиминация печенью пропранолола , несмотря на его высокое сродство к белкам плазмы.

В то же время вещества с низким коэффициентом экстракции могут элиминироваться только в свободном виде.

Константа скорости элиминации (k el , мин -1) – показывает, какая часть ЛС элиминируется из организма в единицу времени Þ Kel = A выд /А общ, где А выд – количество ЛС, выделяемое в ед. времени, А общ – общее количество ЛС в организме.

Значение k el обычно находят путем решения фармакокинетического уравнения, описывающего процесс элиминации лекарства из крови, поэтому k el называют модельным показателем кинетики. Непосредственного отношения к планированию режима дозирования k el не имеет, но ее значение используют для расчета других фармакокинетических параметров.

Константа элиминации прямо пропорциональна клиренсу и обратно пропорционально объему распределения (из определения клиренса): Kel=CL/Vd; = час -1 /мин -1 =доля в час.

Период полувыведения лекарств, его сущность, размерность, взаимосвязь с другими фармакокинетическими параметрами.

Период полуэлиминации (t ½ , мин) – это время, необходимое для снижения концентрации ЛС в крови ровно наполовину. При этом не играет роли каким путем достигается снижение концентрации – при помощи биотрансформации, экскреции или же за счет сочетания обоих процессов.

Период полуэлиминации определяют по формуле:

Период полувыведения – важнейший фармакокинетический параметр, позволяющий:

б) определить время полной элиминации препарата

в) предсказать концентрацию ЛС в любой момент времени (для ЛС с кинетикой первого порядка)

Клиренс как главный параметр фармакокинетики для управления режимом дозирования. Его сущность, размерность и связь с другими фармакокинетическими показателями.

Клиренс (Cl, мл/мин) - объем крови, который очищается от ЛС за единицу времени.

Т.к. плазма (кровь) - «видимая» часть объема распределения, то клиренс – фракция объема распределения, из которой лекарство выделяется в единицу времени. Если обозначить общее количество лекарства в организме через А общ , а количество, которое выделилось через А выд , то:

С другой стороны, из определения объема распределения следует, что общее количество лекарства в организме составляет А общ =V d ´C тер/плазма . Подставляя это значение в формулу клиренса, мы получим:

.

Таким образом, клиренс – отношение скорости выведения лекарственного средства к его концентрации в плазме крови.

В таком виде формулу клиренса используют для расчета поддерживающей дозы лекарства (D п ), т.е той дозы лекарственного средства, которая должна скомпенсировать потерю лекарства и поддержать его уровень на постоянном уровне:

Скорость введения = скорость выведения = Cl´C тер (доза/мин)

D п = скорость введения´t (t - интервал, между приемом лекарства)

Клиренс аддитивен , т.е. элиминация вещества из организма может происходить с участием процессов, идущих в почках, легких, печени и других органах: Cl системный = Cl почечн. + Cl печени + Cl др.

Клиренс связан с периодом полуэлиминации ЛС и объемом распределения : t 1/2 =0,7*Vd/Cl.

Доза. Виды доз. Единицы дозирования лекарственных средств. Цели дозирования лекарств, способы и варианты введения, интервал введения.

Действие ЛС на организм в большей степени определяется их дозой.

Доза - количество вещества, введенное в организм за один прием; выражается в весовых, объемных или условных (биологических) единицах.

Виды доз:

а) разовая доза – количество вещества на один прием

б) суточная доза - количество препарата, назначаемое на сутки в один или несколько приемов

в) курсовая доза - общее количество препарата на курс лечения

г) терапевтические дозы - дозы, в которых препарат используют с лечебными или профилактическими целями (пороговые, или минимальные действующие, средние терапевтические и высшие терапевтические дозы).

д) токсические и смертельные дозы – дозы ЛВ, при которых они начинают оказывать выраженные токсические эффекты или вызывать смерть организма.

е) загрузочная (вводная) доза – кол-во вводимого ЛС, которое заполняет весь объем распределения организма в действующей (терапевтической) концентрации: ВД = (Css * Vd)/F

ж) поддерживающая доза – систематически вводимое количество ЛС, которое компенсирует потери ЛС с клиренсом: ПД = (Css * Cl * DT)/F

Единицы дозирования ЛС:

1) в граммах или долях грамма ЛС

2) количество ЛС в расчете на 1 кг массы тела (например, 1 мг/кг ) или на единицу поверхности тела (например, 1 мг/м 2 )

Цели дозирования ЛС:

1) определить количество ЛС, необходимое для того, чтобы вызвать нужный терапевтический эффект с определенной длительностью

2) избежать явлений интоксикации и побочных эффектов при введении ЛС

Способы введения ЛС : 1) энтерально 2) парентерально (см. в. 5)

Варианты введения ЛС :

а) непрерывный (путем длительных внутрисосудистых инфузий ЛС капельно или через автоматические дозаторы). При непрерывном введении ЛС его концентрация в организме изменяется плавно и не подвергается значительным колебаниям

б) прерывистое введение (инъекционным или неинъекционным способами) - введение лекарства через определенные промежутки времени (интервалы дозирования). При прерывистом введении ЛС его концентрация в организме непрерывно колеблется. После приема определенной дозы она вначале повышается, а затем постепенно снижается, достигая минимальных значений перед очередным введением лекарства. Колебания концентрации тем значительнее, чем больше вводимая доза лекарства и интервал между введениями.

Интервал введения – интервал между вводимыми дозами, обеспечивающий поддержание терапевтической концентрации вещества в крови.

16. Введение лекарств с постоянной скоростью. Кинетика концентрации препарата в крови. Стационарная концентрация препарата в крови (C ss), время ее достижения, расчет и управление ею.

Особенность введения ЛС с постоянной скоростью - плавное изменение его концентрации в крови при введении, при этом:

1) время достижения стационарной концентрации лекарства составляет 4-5t ½ и не зависит от скорости инфузии (величины вводимой дозы)

2) при увеличении скорости инфузии (вводимой дозы) величина С SS также увеличивается в пропорциональное число раз

3) элиминация лекарства из организма после прекращения инфузии занимает 4-5t ½ .

Сss – равновесная стационарная концентрация – концентрация ЛС, достигаемая при скорости введения равной скорости выведения, поэтому:

(из определения клиренса)

За каждый последующий период полувыведения концентрация ЛС прирастает на половину от оставшейся концентрации. Все ЛС, подчиняющиеся закону элиминации первого порядка, будут достигать Css через 4-5 периодов полувыведения.

Подходы к управлению уровнем Сss : изменить вводимую дозу ЛС или интервал введения

17. Прерывистое введение лекарств. Кинетика концентрации препарата в крови, терапевтический и токсический диапазон концентраций. Расчет стационарной концентрации (C ss), границ ее колебаний и управление ею. Адекватный интервал введения дискретных доз.

Колебания концентрации ЛС в плазме крови: 1 - при постоянном внутривенном капельном введении; 2 -при дробном введении той же суточной дозы с интервалом 8 ч;3 - при введении суточной дозы с интервалом 24 ч.

Прерывистое введение ЛС – введение определенного количества ЛС через некоторые промежутки времени.

Равновесная стационарная концентрация достигается через 4-5 периодов полуэлиминации, время ее достижения не зависит от дозы (в начале, когда уровень концентрации ЛС невысок, скорость его элиминации также невысока; по мере увеличения количества вещества в организме нарастает и скорость его элиминации, поэтому рано или поздно наступит такой момент, когда возросшая скорость элиминации уравновесит вводимую дозу ЛС и дальнейший рост концентрации прекратиться)

Css прямо пропорциональна дозе ЛС и обратно пропорциональна интервалу введения и клиренсу ЛС.

Границы колебаний Css: ; C ss min = C ss max × (1 – эл. фр.). Колебания концентрации ЛС пропорциональны T/t 1/2 .

Терапевтический диапазон (коридор безопасности, терапевтическое окно) – это интервал концентраций от минимальной терапевтической до вызывающей появление первых признаков побочных действий.

Токсический диапазон – интервал концентрации от высшей терапевтической до смертельной.

Адекватный режим введения дискретных доз : такой режим введения, при котором флюктуация концентрации препарата в крови укладывается в терапевтический диапазон. Для определения адекватного режима введения ЛС необходимо рассчитать. Разница между Css max и Css min при этом не должна превысить 2Css.

Управление колебаниями Css:

Размах колебаний Css прямо пропорционален дозе ЛС и обратно пропорционален интервалу его введения.

1. Изменить дозу ЛС : при увеличении дозы ЛС диапазон колебаний его Css пропорционально увеличивается

2. Изменить интервал введения ЛС : при увеличении интервала введения ЛС диапазон колебаний его Css пропорционально уменьшается

 

Возможно, будет полезно почитать: