Научные открытия 20 века физика. Самые известные физики мира

В статье поговорим о великих открытиях 20 века. Неудивительно, что с древних времен люди пытались воплотить в реальность свои самые смелые мечты. На рубеже прошлого века были изобретены невероятные вещи, которые перевернули жизнь всего мира.

Рентгеновские лучи

Список великих открытий 20 века начнём с рассмотрения электромагнитного излучения, которое на самом деле открыли в конце XIX века. Автором изобретения стал немецкий физик Вильгельм Рентген. Ученый заметил, что при включении тока в катодной трубке, покрытой кристаллами бария, начинает появляться небольшое свечение. Есть и другая версия, согласно которой жена приносила мужу ужин, и он заметил, что видит её кости, просвечивающиеся сквозь кожу. Это всё версии, но есть и факты. Например, Вильгельм Рентген отказывался получить патент за свое изобретение, так как считал, что эта деятельность не может приносить реальный доход. Таким образом, мы причисляем рентгеновские лучи к великим открытиям 20 века, которые оказали влияние на развитие научно-технического потенциала.

Телевидение

Совсем недавно телевизор был вещью, свидетельствующей о состоятельности своего хозяина, однако в современном мире телевидение отошло на второй план. При этом сама идея изобретения зародилась еще в 19 веке одновременно у русского изобретателя Порфирия Гусева и профессора из Португалии Адриано де Пайва. Они первые сказали о том, что скоро будет изобретено устройство, позволяющее передавать изображение при помощи провода. Первый приемник, размер экрана которого был всего лишь 3 на 3 см, продемонстрировал миру Макс Дикманн. При этом Борис Розинг доказал, что можно применять катодно-лучевую трубку для того, чтобы была возможность преобразовывать электрический сигнал в изображение. В 1908 году физик Ованес Адамян из Армении запатентовал аппарат для передачи сигналов, состоящий из двух цветов. Считается, что первый телевизор был разработан в начале XX веке в Америке. Собрал его русский эмигрант Владимир Зворыкин. Именно он разбил световой луч на зелёный, красный и синий, таким образом получив цветное изображение. Такое изобретение он назвал иконоскопом. На западе изобретателем телевидения считают Джона Берда, который первым запатентовал устройство, создающее картинку из 8 линий.

Мобильные телефоны

Первый мобильный телефон появился в 70-х годах прошлого столетия. Однажды сотрудник известной компании Motorola, которая занималась разработкой портативных устройств, Мартин Купер, показал своим друзьям огромную трубку. Тогда они не поверили, что нечто подобное можно было изобрести. Позже, гуляя по Манхэттену, Мартин позвонил начальнику из компании конкурента. Таким образом, он впервые на практике показал действенность своей огромной телефонной трубки. Советский учёный Леонид Куприянович ещё за 15 лет до этого проводил похожие эксперименты. Именно поэтому определенно говорить о том, кто на самом деле является открывателем портативных устройств, довольно трудно. В любом случае мобильные телефоны - это достойное открытие 20 века, без которого представить современную жизнь просто невозможно.

Компьютер

Одно из самых великих научных открытий XX века - это изобретение компьютера. Согласитесь, что сегодня без этого устройства невозможно ни работать, ни отдыхать. Еще несколько лет назад компьютеры использовались только в специальных лабораториях и организациях, но уже сегодня это обычная вещь в каждой семье. Как же была изобретена эта супермашина?

Немец Конрад Цузе в 1941 году создал вычислительную машину, которая, по сути, могла производить те же операции, что и современный компьютер. Отличие было в том, что машина работала при помощи телефонных реле. Спустя год физик из Америки Джон Атанасов и его аспирант Клиффорд Берри совместно разработали электронный компьютер. Однако этот проект не был завершён, поэтому нельзя говорить о том, что они являются реальными создателями такого устройства. В 1946 году Джон Мокли продемонстрировал, по его заявлению, первый электронный компьютер ЭНИАК. Прошло еще много времени, и огромные коробки заменили маленькие и тонкие устройства. Кстати, персональные компьютеры появились только в конце прошлого века.

Интернет

Великое технологическое открытие 20 века - это интернет. Согласитесь, что без него даже самый мощный компьютер не так уж и полезен, особенно в современном мире. Многие люди не любят смотреть телевизор, но они забывают о том, что власть над человеческим сознанием давно захватил интернет. У кого же возникла идея такой глобальной международной сети? Она появилась в группе ученых в 50-х годах прошлого века. Они хотели создать качественную сеть, которую было бы сложно взломать или прослушать. Причиной возникновения такой мысли послужила Холодная война.

Власти США во время Холодной войны использовали определенное устройство, которое позволяло передавать данные на расстоянии, не прибегая к помощи почты или телефона. Это устройство называлось APRA. Позже ученые исследовательских центров разных штатов занялись созданием сети APRANET. Уже в 1969 году благодаря этому изобретению получилось связать все компьютеры университетов, представленных данной группой ученых. Спустя 4 года к этой сети присоединились другие исследовательские центры. После того как появился e-mail, количество людей, желающих проникнуть во Всемирную паутину начало быстро расти в геометрической прогрессии. Что касается современного состояния, то на данный момент более 3 млрд человек пользуются интернетом каждый день.

Парашют

Несмотря на то что идея парашюта пришла в голову Леонардо да Винчи, всё же это изобретение в современном виде относят к великим открытиям 20 века. С появлением воздухоплавания начались регулярные прыжки с больших воздушных шаров, к которым крепили полураскрытые парашюты. Уже в 1912 году один американец решил прыгнуть с таким устройством из самолёта. Он удачно приземлился на землю и стал самым смелым жителем Америки. Позже инженер Глеб Котельников изобрел парашют исключительно из шелка. Также он сумел упаковать его в небольшой ранец. Проверка изобретения происходила на движущемся автомобиле. Таким образом придумали тормозной парашют, который бы позволял задействовать систему аварийного торможения. Так, перед началом Первой мировой войны ученый получил патент на свое изобретение во Франции, и таким образом стал первооткрывателем парашюта в 20 веке.

Физики

Теперь поговорим о великих физиках 20 века и их открытиях. Всем известно, что физика является основой, без которой представить комплексное развитие какой-либо другой науки в принципе невозможно.

Отметим квантовую теорию Планка. В 1900 году немецкий профессор Макс Планк стал открывателем формулы, которая описывала распределение энергии в спектре черного тела. Заметим, что до этого считалось, что энергия всегда распределяется равномерно, но изобретатель доказал, что распределение происходит пропорционально благодаря квантам. Ученый составил доклад, которому на то время никто не поверил. Однако уже через 5 лет благодаря выводам Планка великий ученый Эйнштейн смог создать квантовую теорию фотоэффекта. Благодаря квантовой теории Нильс Бор сумел построить модель атома. Таким образом, Планк создал мощную базу для дальнейших открытий.

Нельзя забывать о самом великом открытии 20 века - открытии теории относительности Альберта Эйнштейна. Ученому удалось доказать, что гравитация представляет собой следствие искривления четырехмерного пространства, а именно времени. Также он объяснил эффект замедления времени. Благодаря открытиям Эйнштейна удалось рассчитать многие астрофизические величины и расстояния.

К величайшим открытиям 19-20 века можно отнести изобретение транзистора. Первое рабочее устройство было создано в 1947 году исследователями из Америки. Учёные экспериментально подтвердили верность своих идей. В 1956 году они уже получили Нобелевскую премию за открытия. Благодаря им в электронике началась новая эра.

Медицина

Рассмотрение великих открытий в медицине 20-21 века начнём с изобретения пенициллина Александром Флемингом. Известно, что это ценное вещество было обнаружено в результате небрежности. Благодаря открытию Флеминга люди перестали бояться опаснейших болезней. В этом же столетии была открыта структура ДНК. Её открывателями считаются Фрэнсис Крик и Джеймс Уотсон, которые при помощи картона и металла создали первую модель молекулы ДНК. Невероятную шумиху подняла информация о том, что у всех живых организмов принцип строения ДНК одинаков. За это революционное открытие ученые были награждены Нобелевской премией.

Великие открытия 20-21 века продолжаются нахождением возможности пересаживать органы. Такие действия довольно долго воспринимались как нечто нереальное, но уже в прошлом веке ученые поняли, что добиться безопасной качественной пересадки можно. Официальное открытие этого факта состоялось в 1954 году. Тогда врач из Америки Джозеф Мюррей пересадил почку одному из своих пациентов от брата-близнеца. Таким образом он показал, что можно пересадить человеку чужой орган, и он будет еще долго жить.

В 1990 году врач был награжден Нобелевской премией. Однако еще длительное время специалисты пересаживали всё, кроме сердца. Наконец, в 1967 году мужчине в пожилом возрасте пересадили сердце молодой женщины. Тогда пациенту удалось прожить всего 18 дней, но уже сегодня люди с донорскими органами и сердцами живут многие годы.

УЗИ

Также к важным изобретениям прошлого века в области медицины стоит отнести УЗИ, без которого лечение представить очень трудно. В современном мире сложно найти человека, который бы не проходил ультразвуковое сканирование. Изобретение датируют 1955 годом. Невероятнейшим открытием прошлого века считают оплодотворение в пробирке. Британским ученым удалось в лабораторных условиях оплодотворить яйцеклетку, а после поместить ее в матку женщины. В итоге на свет появилась всемирно известная "девочка из пробирки" Луиза Браун.

Великие географические открытия 20 века

В прошлом веке была подробно исследована Антарктида. Благодаря этому ученые получили точнейшие данные о климатических условиях и фауне Антарктики. Российский академик Константин Марков создал первый в мире атлас Антарктиды. Великие открытия начала 20 века в области географии продолжим экспедицией, которая отправилась в Тихий океан. Советскими исследователями была измерена глубочайшая океаническая впадина, которая получила название Марианской.

Морской атлас

Позже был создан морской атлас, который позволял изучать направление течения, ветра, определять глубину и распределение температуры. Одним из самых громких открытий прошлого века стало обнаружение озера Восток под огромным слоем льда в Антарктиде.

Как мы уже знаем, прошлый век был очень насыщен различного рода открытиями. Можно сказать, что произошел настоящий прорыв практически во всех сферах. Потенциальные возможности ученых со всего мира достигли своего максимума, благодаря чему в настоящее время мир развивается семимильными шагами. Многие открытия стали поворотным моментом в истории всего человечества, особенно это касается исследований в области медицины.

Физики 18 – 20 веков.

Методическая разработка по физике .

Преподаватель

Штейникова Ирина Васильевна

2014 год


Данная презентация является продолжением серии об ученых, внесших наибольший вклад в развитие физики. Она состоит из нескольких ключевых слайдов, на которых перечислены физики 18-20 веков. Имя или фамилия сопровождается изображением. При этом и имя и изображение являются ссылками на вспомогательные слайды, на которых о данных личностях рассказывается более подробно. На этих слайдах некоторые слова выделены цветом, это означает, что данное слово является ссылкой на внешний источник, расположенный в сети Интернет. В ходе работы пользователь выбирает с помощью мыши имя ученого или его изображение, либо ссылку на следующую страницу.

Чтобы вернуться на основную страницу со вспомогательной, нужно нажать ссылку «обратно на ……». Для перехода на следующую основную страницу необходимо выбрать ссылку «на следующую страницу», Для завершения работы необходимо выбрать ссылку «Завершить презентацию», расположенную на последней основной странице. Надеюсь, что данная презентация окажет Вам помощь в подготовке к занятиям.


Томас Юнг

Майкл Фарадей

Физики 18 века

Следующая страница


Томас Юнг

  • Дата рождения 13 июня 1773 , - английский физик , врач, астроном и востоковед, один из создателей волновой теории света . Наиболее важные направления его работ - оптика , механика , физиология зрения . Высказал гипотезу о поперечности световых колебаний,разработал также теорию цветного зрения. Исследовал деформациию сдвига, ввёл числовую характеристику упругости при растяжении и сжатии - так называемый модуль Юнга . Он впервые рассмотрел механическую работу как величину, пропорциональную энергии (термин ввёл Юнг), под которой понимал величину, пропорциональную массе и квадрату скорости тела.

Назад на «Физики 18 века»


Майкл Фарадей

Дата рождения 22 сентября 1791 - английский физик, химик и физико-химик, основоположник учения об электромагнитном поле , В 1832 году открыл электрохимические законы , которые легли в основу нового раздела науки - электрохимии , имеющего сегодня огромное количество технологических приложений. Фарадея увлекла проблема связи между электричеством и магнетизмом . Он поставил задачу «Превратить магнетизм в электричество» и через 10 лет нашёл решение этой проблемы.

Назад на «Физики 18 века»


Менделеев

Максвелл

Беккерель

Физики начала 19 века

Следующая страница


Джеймс Клерк Максвелл

  • Дата рождения 13 июня 1831 - британский физик и математик . Заложил основы современной классической электродинамики (уравнения Максвелла ), ввёл в физику понятия тока смещения и электромагнитного поля , получил ряд следствий из своей теории (предсказание электромагнитных волн , электромагнитная природа света , давление света и другие). Один из основателей кинетической теории газов , получил ряд важных результатов в молекулярной физике и термодинамике . Пионер теории цветов и теории упругости .

Дмитрий Иванович Менделеев

  • Дата рождения 27 января 1834 - русский учёный-энциклопедист : химик , физикохимик , физик , метролог , экономист , технолог , геолог , метеоролог , педагог , воздухоплаватель , приборостроитель . Профессор Санкт-Петербургского университета ; член-корреспондент по разряду «физический» Императорской Санкт-Петербургской Академии наук . Среди наиболее известных открытий - периодический закон химических элементов , один из фундаментальных законов мироздания , неотъемлемый для всего естествознания .

Назад на «Физики начала 19 века»


Антуан Анри Беккерель

  • Дата рождения 15 декабря 1852 - французский физик , В 1896 г. Беккерель случайно открыл радиоактивность во время работ по исследованию фосфоресценции в солях урана. В 1903 г. он получил совместно с Пьером и Марией Кюри Нобелевскую премию по физике «В знак признания его выдающихся заслуг, выразившихся в открытии самопроизвольной радиоактивности».

Назад на «Физики начала 19 века»


Генрих Рудольф Герц

  • Дата рождения - 22 февраля 1857 - немецкий физик. Основное достижение - экспериментальное подтверждение электромагнитной теории света Джеймса Максвелла . Герц доказал существование электромагнитных волн . Исследовал отражение , интерференцию , дифракцию и поляризацию электромагнитных волн , доказал, что свет – это разновидность электромагнитных волн. Герц впервые наблюдал и дал описание внешнего фотоэффекта .

Назад на «Физики начала 19 века»


Попов

Циолковский

Резерфорд

Содди

Физики второй половины 19 века

Следующая страница


Константин Эдуардович Циолковский

  • Дата рождения 5 сентября 1857 - российский и советский учёный - самоучка , исследователь, школьный учитель. Один из пионеров космонавтики . Обосновал вывод уравнения реактивного движения, пришёл к выводу о необходимости использования «ракетных поездов» - прототипов многоступенчатых ракет. Автор работ по аэродинамике, воздухоплаванию и другим наукам. Сторонник и пропагандист идей освоения космического пространства. Предлагал заселить космическое пространство с использованием орбитальных станций, выдвинул идею поездов на воздушной подушке

Александр Степанович Попов

  • Дата рождения 4 марта 1859 - русский физик и электротехник, профессор, изобретатель радио .
  • Впервые он представил своё изобретение 7 мая 1895 года на заседании Русского физико-химического общества . С 1897 года Попов проводил опыты по радиотелеграфированию на кораблях Балтийского флота. Летом 1901 года Попов модифицировал свой приёмник, поставив вместо чувствительного реле телефонные трубки, после этого фирмой Дюкрете , уже выпускавшей в 1898 году приёмники его конструкции, был налажен выпуск телефонных приёмников.

Назад на «Физики 2 половины 19 века


Эрнест Резерфорд

  • Дата рождения 30 августа 1871 - британский физик. Известен как «отец» ядерной физики , создал планетарную модель атома . Открыл альфа - и бета-излучение , короткоживущий изотоп радона и множество изотопов . Объяснил на основе свойств радона радиоактивность тория, открыл и объяснил радиоактивное превращение химических элементов, создал , расщепил атом азота, обнаружил протон. Доказал, что альфа-частица - ядро гелия. вывел формулу Резерфорда . Первым открыл образование новых химических элементов при распаде тяжелых химических радиоактивных элементов.

Назад на «Физики 2 половины 19 века


Фредерик Содди

  • Дата рождения 2 сентября 1877 - английский радиохимик, член Лондонского королевского общества (1910 ), лауреат Нобелевской премии по химии (1921). Совместно с Резерфордом предложил теорию радиоактивного распада В 1903 Резерфорд и Содди установили, что радиоактивный распад протекает по закону, описывающему ход мономолекулярной реакции. Всего им было опубликовано более 70 статей по химии.

Назад на «Физики 2 половины 19 века


Эйнштейн

Чедвик

Физики начала 20 века

Следующая страница


Альберт Эйнштейн

  • Эйнштейн - автор более 300 научных работ по физике. Он разработал несколько значительных физических теорий: Специальная теория относительности (1905 ), Общая теория относительности , Квантовая теория фотоэффекта , Квантовая теория теплоёмкости , Квантовая статистика Бозе - Эйнштейна , Статистическая теория броуновского движения , Теория индуцированного излучения , Теория рассеяния света на термодинамических флуктуациях в среде. Эйнштейн способствовал пересмотру понимания физической сущности пространства и времени и построению новой теории гравитации . Вместе с Планком , заложил основы квантовой теории.

  • Дата рождения 8 марта 1879 - немецкий химик, учёный-новатор в области радиохимии , открывший ядерную изомерию (Уран Z) и расщепление урана . В 1920-х годах разработал метод применения радиоизотопов в химии, включая выращивание кристаллов и использование меченых атомов в химических реакциях и создал тем самым новую область химии - прикладную радиохимию. Решительно выступал против применения ядерной энергии в военных целях. Он считал такое использование его открытия злоупотреблением и даже преступлением.

Назад на «Физики начала 20 века


Джеймс Чедвик

  • Дата рождения 20 октября 1891 - английский физик , известный по открытие нейтрона , Ученик Э.Резерфорда . В 1920 году экспериментально подтвердил равенство заряда ядра порядковому номеру элемента. Изучал искусственное превращение элементов под действием альфа-частиц (совместно с Резерфордом). В 1943 - 1945 гг. возглавлял группу английских учёных, работавших в Лос-Аламосской лаборатории (США ) над проектом атомной бомбы.

Назад на «Физики начала 20 века


Гейзенберг

Ферми

Штрассман

Физики второй половины 20 века

Следующая страница


Энрико Ферми

  • Дата рождения 29 сентября 1901 - итало-американский физик , внёсший большой вклад в развитие современной теоретической и экспериментальной физики, один из основоположников квантовой физики . Разработал статистику частиц с полуцелым спином (фермионов ) . Разработал правила квантования электромагнитного поля . Создал теорию бета-распада , прототип теории слабых взаимодействий элементарных частиц . Пришёл к выводу, что нейтроны должны быть наиболее эффективным орудием для получения радиоактивных элементов . Открыл более 60 изотопов и замедление нейтронов (эффект Ферми), селективное поглощение нейтронов .

Вернер Гейзенберг

  • Дата рождения 5 декабря 1901 - немецкий физик - теоретик , один из создателей квантовой механики . Автор ряда фундаментальных результатов в квантовой теории: заложил основы матричной механики , сформулировал соотношение неопределённостей , применил формализм квантовой механики к проблемам ферромагнетизма , аномального эффекта Зеемана и прочим. Участвовал в развитии квантовой электродинамики (теория Гейзенберга - Паули ) и квантовой теории поля , предпринимал попытки создания единой теории поля . Ведущий теоретик немецкого ядерного проекта . Изучал физику космических лучей , теорию турбулентности .

Назад на «Физики второй половины 20 века»


Фриц Штрассман

  • Дата рождения 22 февраля 1902 - немецкий химик и физик . Изучал процессы ядерного деления , свойства радиоактивных изотопов урана и тория . В 1938 совместно с О. Ганом открыл деление ядер урана при бомбардировке их нейтронами , химическими методами доказал факт деления.

Назад на «Физики второй половины 20 века»


Поль Адриен Морис Дирак

  • Дата рождения 8 августа 1902 - английский физик -теоретик, один из создателей квантовой механики . Работы Дирака посвящены квантовой физике , теории элементарных частиц , общей теории относительности . Автор трудов по квантовой механике , квантовой электродинамике и квантовой теории поля . Предложил релятивистское уравнение электрона , что объяснило спин , Ввел представление об античастицах . К другим известным результатам Дирака относятся статистическое распределение для фермионов , концепция магнитного монополя , гипотеза больших чисел, гамильтонова формулировка теории гравитации.

Назад на «Физики второй половины 20 века»


Курчатов

Иваненко

Королев

Советские физики

Завершить презентацию


Дмитрий Дмитриевич Иваненко

  • Дата рождения 29 июля 1904 - советский физик-теоретик . Работы относятся к ядерной физике, теории поля, синхротронному излучению , единой теории поля , теории гравитации , истории физики. Большинство работ выполнены совместно с крупнейшими физиками первой половины XX-го века. С Г. Гамовым вывел уравнение Шредингера , исходя из модели 5-мерного пространства. С Ландау рассматривал уравнение Клейна - Гордона, статистику Ферми - Дирака и геометрию Иваненко - Ландау - Кэлера. Рассматривал теорию мировых констант, предложил протон-нейтронную модель ядра

Назад на «Советские физики»


Игорь Васильевич Курчатов

  • Дата рождения 12 января 1903 - русский советский физик , «отец» советской атомной бомбы . Основатель и первый директор Института атомной энергии , главный научный руководитель атомной проблемы в СССР , один из основоположников использования ядерной энергии в мирных целях. Под его руководством был произведён взрыв первой советской атомной бомбы , разработана первая в мире водородная бомба и термоядерная бомба АН602 (Царь-бомба) рекордной мощности 52 000 кт. Занимался проблемой управляемого термоядерного синтеза . Руководил разработкой и строительством первой в мире атомной электростанцией .

Назад на «Советские физики»


Сергей Павлович Королев

  • Дата рождения 12 января 1907 - советский учёный, конструктор и организатор производства ракетно - космической техники и ракетного оружия СССР , основоположник практической космонавтики . Крупнейшая фигура XX века в области космического ракетостроения и кораблестроения. Создатель советской ракетно-космической техники, обеспечившей стратегический паритет и сделавшей СССР передовой ракетно-космической державой, ключевая фигура в освоении человеком космоса, создатель практической космонавтики. Осуществил запуск первого искусственного спутника Земли и первого космонавта Юрия Гагарина .

Назад на «Советские физики»


  • http://ru.wikipedia.org/wiki/%D0%A6%D0%B8%D0%BE%D0%BB%D0%BA%D0%BE%D0%B2%D1%81%D0%BA%D0%B8%D0%B9
  • http://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BF%D0%BE%D0%B2,_%D0%90%D0%BB%D0%B5%D0%BA%D1%81%D0%B0%D0%BD%D0%B4%D1%80_%D0%A1%D1%82%D0%B5%D0%BF%D0%B0%D0%BD%D0%BE%D0%B2%D0%B8%D1%87
  • http://ru.wikipedia.org/wiki/%D0%AD%D1%80%D0%BD%D0%B5%D1%81%D1%82_%D0%A0%D0%B5%D0%B7%D0%B5%D1%80%D1%84%D0%BE%D1%80%D0%B4
  • http://ru.wikipedia.org/wiki/%D0%A1%D0%BE%D0%B4%D0%B4%D0%B8
  • http://ru.wikipedia.org/wiki/%D0%AD%D0%B9%D0%BD%D1%88%D1%82%D0%B5%D0%B9%D0%BD,_%D0%90%D0%BB%D1%8C%D0%B1%D0%B5%D1%80%D1%82
  • http://ru.wikipedia.org/wiki/%D0%9E%D1%82%D1%82%D0%BE_%D0%B3%D0%B0%D0%BD
  • http://ru.wikipedia.org/wiki/%D0%A7%D0%B5%D0%B4%D0%B2%D0%B8%D0%BA,_%D0%94%D0%B6%D0%B5%D0%B9%D0%BC%D1%81
  • http://ru.wikipedia.org/wiki/%D0%AD%D0%BD%D1%80%D0%B8%D0%BA%D0%BE_%D0%A4%D0%B5%D1%80%D0%BC%D0%B8
  • http://ru.wikipedia.org/wiki/%D0%93%D0%B5%D0%B9%D0%B7%D0%B5%D0%BD%D0%B1%D0%B5%D1%80%D0%B3,_%D0%92%D0%B5%D1%80%D0%BD%D0%B5%D1%80_%D0%9A%D0%B0%D1%80%D0%BB
  • http://ru.wikipedia.org/wiki/%D0%A8%D1%82%D1%80%D0%B0%D1%81%D1%81%D0%BC%D0%B0%D0%BD,_%D0%A4%D1%80%D0%B8%D1%86
  • http://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BB%D1%8C_%D0%94%D0%B8%D1%80%D0%B0%D0%BA
  • http://ru.wikipedia.org/wiki/%D0%98%D0%B2%D0%B0%D0%BD%D0%B5%D0%BD%D0%BA%D0%BE,_%D0%94%D0%BC%D0%B8%D1%82%D1%80%D0%B8%D0%B9_%D0%94%D0%BC%D0%B8%D1%82%D1%80%D0%B8%D0%B5%D0%B2%D0%B8%D1%87
  • http://www.g-sardanashvily.ru/d-ivanenko/ivphoto.html

МАРРИ ГЕЛЛ-МАНН (род. в 1929 г.)

Марри Гелл-Манн родился 15 сентября 1929 года в Нью-Йорке и был младшим сыном эмигрантов из Австрии Артура и Полин (Райхштайн) Гелл-Манн. В возрасте пятнадцати лет Марри поступил в Йельский университет. Он окончил его в 1948 году с дипломом бакалавра наук. Последующие годы он провел в аспирантуре Массачусетсского технологического института. Здесь в 1951 году Гелл-Манн получил докторскую степень по физике.

ЛЕВ ДАВИДОВИЧ ЛАНДАУ (1908—1968)

Лев Давидович Ландау родился 22 января 1908 года в семье Давида Любови Ландау в Баку. Его отец был известным инженером-нефтяником,! работавшим на местных нефтепромыслах, а мать — врачом. Она занималась физиологическими исследованиями. Старшая сестра Ландау стала инженером-химиком.


ИГОРЬ ВАСИЛЬЕВИЧ КУРЧАТОВ (1903—1960)

Игорь Васильевич Курчатов родился 12 января 1903 года в семье помощника лесничего в Башкирии В 1909 году семья переехала в Симбирск В 1912 году Курчатовы перебираются в Симферополь Здесь мальчик поступает в первый класс гимназии.

ПОЛЬ ДИРАК (1902—1984)

Английский физик Поль Адриен Морис Дирак родился 8 августа 1902 года в Бристоле, в семье уроженца Швеции Чарлза Адриена Ладислава Дирака, учителя французского языка в частной школе, и англичанки Флоренс Ханны (Холтен) Дирак.

ВЕРНЕР ГЕЙЗЕНБЕРГ (1901—1976)

Вернер Гейзенберг был одним из самых молодых ученых, получивших Нобелевскую премию. Целеустремленность и сильный дух соперничества воодушевили его на открытие одного из наиболее известных принципов науки — принципа неопределенности.

ЭНРИКО ФЕРМИ (1901—1954)

«Великий итальянский физик Энрико Ферми, — писал Бруно Понтекорво, — занимает особое место среди современных ученых: в наше время, когда узкая специализация в научных исследованиях стала типичной, трудно указать столь же универсального физика, которым был Ферми. Можно даже сказать, что появление на ученой арене XX века человека, который внес такой громадный вклад в развитие теоретической физики, и экспериментальной физики, и астрономии, и технической физики, ~ явление скорее уникальное, чем редкое».

НИКОЛАЙ НИКОЛАЕВИЧ СЕМЕНОВ (1896—1986)

Николай Николаевич Семенов родился 15 апреля 1896 года в Саратове, в семье Николая Александровича и Елены Дмитриевны Семеновых. Окончив в 1913 году реальную школу в Самаре, он поступил на физико-математический факультет Санкт-Петербургского университета, где, занимаясь у известного русского физика Абрама Иоффе, проявил себя активным студентом.

ИГОРЬ ЕВГЕНЬЕВИЧ ТАММ (1895—1971)

Игорь Евгеньевич родился 8 июля 1895 года во Владивостоке в семье Ольги (урожденной Давыдовой) Тамм и Евгения Тамма, инженера-строителя. Евгений Федорович работал на строительстве Транссибирской железной дороги. Отец Игоря был не только разносторонним инженером, но и исключительно мужественным человеком. Во время еврейского погрома в Елизаветграде он один пошел на толпу черносотенцев с тростью и разогнал ее. Возвращаясь из дальних краев с трехлетним Игорем, семья совершила путешествие морем через Японию в Одессу.

ПЕТР ЛЕОНИДОВИЧ КАПИЦА (1894—1984)

Петр Леонидович Капица родился 9 июля 1894 года в Кронштадте в семье военного инженера, генерала Леонида Петровича Капицы, строителя кронштадтских укреплений. Это был образованный интеллигентный человек, одаренный инженер, сыгравший важную роль в развитии русских вооруженных сил. Мать, Ольга Иеронимовна, урожденная Стебницкая, была образованной женщиной. Она занималась литературой, педагогической и общественной деятельностью, оставив след в истории русской культуры.


ЭРВИН ШРЁДИНГЕР (1887—1961)

Австрийский физик Эрвин Шредингер родился 12 августа 1887 года в Вене Его отец, Рудольф Шредингер, был владельцем фабрики по производству клеенки, увлекался живописью и питал интерес к ботанике Единственный ребенок в семье, Эрвин получил начальное образование дома Его первым учителем был отец, о котором впоследствии Шредингер отзывался как о «друге, учителе и не ведающем усталости собеседнике» В 1898 году Шредингер поступил в Академическую гимназию, где был первым учеником по греческому языку, латыни, классической литературе, математике и физике В гимназические годы у Шредингера возникла любовь к театру.

НИЛЬС БОР (1885—1962)

Эйнштейн сказал однажды: «Что удивительно привлекает в Боре как ученом-мыслителе, так это редкий сплав смелости и осторожности; мало кто обладал такой способностью интуитивно схватывать суть скрытых вещей, сочетая это с обостренным критицизмом. Он, без сомнения, является одним из величайших научных умов нашего века».

МАКС БОРН (1882—1970)

Его имя ставят в один ряд с такими именами, как Планк и Эйнштейн, Бор, Гейзенберг. Борн по праву считается одним из основателей квантовой механики. Ему принадлежат многие основополагающие работы в области теории строения атома, квантовой механики и теории относительности.

АЛЬБЕРТ ЭЙНШТЕЙН (1879—1955)

Его имя часто на слуху в самом обычном просторечии. «Эйнштейном здесь и не пахнет»; «Ничего себе Эйнштейн»; «Да, это точно не Эйнштейн!». В его век, когда доминировала как никогда ранее наука, он стоит особняком, словно некий символ интеллектуальной мощи Иной раз даже как бы возникает мысль" человечество делится на две части — Альберт Эйнштейн и весь остальной мир.

ЭРНЕСТ РЕЗЕРФОРД (1871—1937)

Эрнест Резерфорд родился 30 августа 1871 года вблизи города Нелсон (Новая Зеландия) в семье переселенца из Шотландии. Эрнест был четвертым из двенадцати детей. Мать его работала сельской учительницей. Отец будущего ученого организовал деревообрабатывающее предприятие. Под руководством отца мальчик получил хорошую подготовку для работы в мастерской, что впоследствии помогло ему при конструировании и постройке научной аппаратуры.

МАРИЯ КЮРИ-СКЛОДОВСКА (1867—1934)

Мария Склодовска родилась 7 ноября 1867 года в Варшаве Она была младшей из пяти детей в семье Владислава и Брониславы Склодовских. Мария воспитывалась в семье, где занятия наукой пользовались уважением. Ее отец преподавал физику в гимназии, а мать, пока не заболела туберкулезом, была директором гимназии. Мать Марии умерла, когда девочке было одиннадцать лет.

ПЕТР НИКОЛАЕВИЧ ЛЕБЕДЕВ (1866—1912)
Петр Николаевич Лебедев родился 8 марта 1866 года в Москве, в купеческой семье Его отец работал доверенным приказчиком и относился к своей работе с настоящим энтузиазмом В его глазах торговое дело было окружено ореолом значимости и романтики Это же отношение он прививал своему единственному сыну, и поначалу успешно В первом письме восьмилетний мальчик пишет отцу «Милый папа, здоров ли ты и хорошо ли торгуешь?»

МАКС ПЛАНК (1858—1947)

Немецкий физик Макс Карл Эрнст Людвиг Планк родился 23 апреля 1858 года в прусском городе Киле, в семье профессора гражданского права Иоганна Юлиуса Вильгельма фон Планка, профессора гражданского права, и Эммы (в девичестве Патциг) Планк. В детстве мальчик учился играть на фортепиано и органе, обнаруживая незаурядные музыкальные способности. В 1867 году семья переехала в Мюнхен, и там Планк поступил в Королевскую Максимилиановскую классическую гимназию, где превосходный преподаватель математики впервые пробудил в нем интерес к естественным и точным наукам.

ГЕНРИХ РУДОЛЬФ ГЕРЦ (1857—1894)

В истории науки не так много открытий, с которыми приходится соприкасаться каждый день. Но без того, что сделал Генрих Герц, современную жизнь представить уже невозможно, поскольку радио и телевидение являются необходимой частью нашего быта, а он сделал открытие именно в этой области.

ДЖОЗЕФ ТОМСОН (1856—1940)

Английский физик Джозеф Томсон вошел в историю науки как человек, открывший электрон. Однажды он сказал: «Открытия обязаны остроте и силе наблюдательности, интуиции, непоколебимому энтузиазму до окончательного разрешения всех противоречий, сопутствующих пионерской работе».

ГЕНДРИК ЛОРЕНЦ (1853—1928)

В историю физики Лоренц вошел как создатель электронной теории, в которой синтезировал идеи теории поля и атомистики.Гендрик Антон Лоренц родился 15 июля 1853 года в голландском городе Арнхеме. Шести лет он пошел в школу. В 1866 году, окончив школу лучшим учеником, Гендрик поступил в третий класс высшей гражданской школы, примерно соответствующей гимназии. Его любимыми предметами стали физика и математика, иностранные языки. Для изучения французского и немецкого языков Лоренц ходил в церкви и слушал на этих языках проповеди, хотя в бога не верил с детства.

ВИЛЬГЕЛЬМ РЕНТГЕН (1845—1923)

В январе 1896 года над Европой и Америкой прокатился тайфун газетных сообщений о сенсационном открытии профессора Вюрцбургского университета Вильгельма Конрада Рентгена. Казалось не было газеты, которая бы не напечатала снимок кисти руки, принадлежащей, как выяснилось позже, Берте Рентген, жене профессора. А профессор Рентген, запершись у себя в лаборатории, продолжал усиленно изучать свойства открытых им лучей. Открытие рентгеновских лучей дало толчок новым исследованиям. Их изучение привело к новым открытиям, одним из которых явилось открытие радиоактивности.

ЛЮДВИГ БОЛЬЦМАН (1844—1906)

Людвиг Больцман, без сомнения, был величайшим ученым и мыслителем, которого дала миру Австрия. Еще при жизни Больцман, несмотря на положение изгоя в научных кругах, был признан великим ученым, его приглашали читать лекции во многие страны. И, тем не менее, некоторые его идеи остаются загадкой даже в наше время. Сам Больцман писал о себе: «Идеей, заполняющей мой разум и деятельность, является развитие теории». А Макс Лауэ позднее эту мысль уточнит так: «Его идеал заключался в том, чтобы соединить все физические теории в единой картине мира».

АЛЕКСАНДР ГРИГОРЬЕВИЧ СТОЛЕТОВ (1839—1896)

Александр Григорьевич Столетов родился 10 августа 1839 года в семье небогатого владимирского купца. Его отец, Григорий Михайлович, владел небольшой бакалейной лавкой и мастерской по выделке кож. В доме была неплохая библиотека, и Саша, научившись читать в четырехлетнем возрасте, стал рано ею пользоваться. В пять лет он уже читал совершенно свободно.

УИЛЛАРД ГИББС (1839—1903)

Загадка Гиббса заключается не в том, был ли он неправильно понятым или неоцененным гением. Загадка Гиббса состоит в другом: как случилось, что прагматическая Америка в годы царствования практицизма произвела на свет великого теоретика? До него в Америке не было ни одного теоретика. Впрочем, как почти не было теоретиков и после. Подавляющее большинство американских ученых — экспериментаторы.

ДЖЕЙМС МАКСВЕЛЛ (1831—1879)

Джеймс Максвелл родился в Эдинбурге 13 июня 1831 года. Вскоре после рождения мальчика родители увезли его в свое имение Гленлэр. С этого времени «берлога в узком ущелье» прочно вошла в жизнь Максвелла. Здесь жили и умерли его родители, здесь подолгу жил и похоронен он сам.

ГЕРМАН ГЕЛЬМГОЛЬЦ (1821—1894)

Герман Гельмгольц — один из величайших ученых XIX века. Физика, физиология, анатомия, психология, математика... В каждой из этих наук он сделал блестящие открытия, которые принесли ему мировую славу.

ЭМИЛИЙ ХРИСТИАНОВИЧ ЛЕНЦ (1804—1865)

С именем Ленца связаны фундаментальные открытия в области электродинамики. Наряду с этим ученый по праву считается одним из основоположников русской географии.Эмилий Христианович Ленц родился 24 февраля 1804 года в Дерпте (ныне Тарту). В 1820 году он окончил гимназию и поступил в Дерптский университет. Самостоятельную научную деятельность Ленц начал в качестве физика в кругосветной экспедиции на шлюпе «Предприятие» (1823— 1826), в состав которой был включен по рекомендации профессоров университета. В очень короткий срок он совместно с ректором Е.И. Парротом создал уникальные приборы для глубоководных океанографических наблюдений — лебедку-глубомер и батометр. В плавании Ленц провел океанографические, метеорологические и геофизические наблюдения в Атлантическом, Тихом и Индийском океанах. В 1827 году он выполнил обработку полученных данных и проанализировал их.

МАЙКЛ ФАРАДЕЙ (1791—1867)

олько открытий, что их хватило бы доброму десятку ученых, чтобы обессмертить свое имя.Майкл Фарадей родился 22 сентября 1791 года в Лондоне, в одном из беднейших его кварталов. Его отец был кузнецом, а мать — дочерью земледельца-арендатора. Квартира, в которой появился на свет и провел первые годы своей жизни великий ученый, находилась на заднем дворе и помещалась над конюшнями.

ГЕОРГ ОМ (1787—1854)

О значении исследований Ома хорошо сказал профессор физики Мюнхенского университета Е. Ломмель при открытии памятника ученому в 1895 году: «Открытие Ома было ярким факелом, осветившим ту область электричества, которая до него была окутана мраком. Ом указал) единственно правильный путь через непроходимый лес непонятных фактов. Замечательные успехи в развитии электротехники, за которыми мы с удивлением наблюдали в последние десятилетия, могли быть достигнуты! только на основе открытия Ома. Лишь тот в состоянии господствовать над силами природы и управлять ими, кто сумеет разгадать законы природы, Ом вырвал у природы так долго скрываемую ею тайну и передал ее в руки современников».

ГАНС ЭРСТЕД (1777—1851)

«Ученый датский физик, профессор, — писал Ампер, — своим великим открытием проложил физикам новый путь исследований. Эти исследования не остались бесплодными; они привлекли к открытию множества фактов, достойных внимания всех, кто интересуется прогрессом».

АМЕДЕО АВОГАДРО (1776—1856)

В историю физики Авогадро вошел как автор одного из важнейших законов молекулярной физики.Лоренцо Романо Амедео Карло Авогадро ди Кваренья э ди Черрето родился 9 августа 1776 года в Турине — столице итальянской провинции Пьемонт в семье служащего судебного ведомства Филиппе Авогадро. Амедео был третьим из восьми детей. Предки его с XII века состояли на службе католической церкви адвокатами и по традиции того времени их профессии и должности передавались по наследству. Когда пришла пора выбирать профессию, Амедео также занялся юриспруденцией. В этой науке он быстро преуспел и уже в двадцать лет получил ученую степень доктора церковного права.

АНДРЕ МАРИ АМПЕР (1775—1836)

Французский ученый Ампер в истории науки известен, главным образом, как основоположник электродинамики. Между тем он был универсальным ученым, имеющим заслуги и в области математики, химии, биологии и даже в лингвистике и философии. Это был блестящий ум, поражавший своими энциклопедическими знаниями всех близко знавших его людей.

ШАРЛЬ КУЛОН (1736—1806)
Для измерения сил, действующих между электрическими зарядами. Кулон использовал изобретенные им крутильные весы.Французский физик и инженер Шарль Кулон достиг блестящих научных результатов. Закономерности внешнего трения, закон кручения упругих нитей, основной закон электростатики, закон взаимодействия магнитных полюсов — все это вошло в золотой фонд науки. «Кулоновское поле», «кулоновский потенциал», наконец, название единицы электрического заряда «кулон» прочно закрепились в физической терминологии.

ИСААК НЬЮТОН (1642—1726)

Исаак Ньютон родился в день Рождественского праздника 1642 года в деревушке Вульсторп в Линкольншире Отец его умер еще до рождения сына Мать Ньютона, урожденная Айскоф, вскоре после смерти мужа преждевременно родила, и новорожденный Исаак был поразительно мал и хил Думали, что младенец не выживет Ньютон, однако, дожил до глубокой старости и всегда, за исключением кратковременных расстройств и одной серьезной болезни, отличался хорошим здоровьем.

ХРИСТИАН ГЮЙГЕНС (1629—1695)

Принцип действия анкерного спускового механизма.Ходовое колесо (1) раскручивается пружиной (на рисунке не показана}. Анкер (2), связанный с маятником (3), входит левой палетой (4) между зубьями колеса. Маятник отклоняется в другую сторону, анкер освобождает колесо. Оно успевает повернуться только на один зуб, и в зацепление входит правая полета (5). Потом все повторяется в обратной последовательности.

БЛЕЗ ПАСКАЛЬ (1623—1662)

Блез Паскаль, сын Этьена Паскаля и Антуанетты, урожденной Бегон, родился в Клермоне 19 июня 1623 года. Вся семья Паскалей отличалась выдающимися способностями. Что касается самого Блеза, он с раннего детства обнаруживал признаки необыкновенного умственного развития.В 1631 году, когда маленькому Паскалю было восемь лет, его отец переселился со всеми детьми в Париж, продав по тогдашнему обычаю свою должность и вложив значительную часть своего небольшого капитала в Отель де-Билль.

АРХИМЕД (287 — 212 до н. э.)

Архимед родился в 287 году до нашей эры в греческом городе Сиракузы, где и прожил почти всю свою жизнь. Отцом его был Фидий, придворный астроном правителя города Гиерона. Учился Архимед, как и многие другие древнегреческие ученые, в Александрии, где правители Египта Птолемеи собрали лучших греческих ученых и мыслителей, а также основали знаменитую, самую большую в мире библиотеку.

1900 г. – М. Планк сформулировал квантовую гипотезу и ввел фундаментальную постоянную (постоянная Планка), имеющую размерность действия, положив начало квантовой теории.
– М. Планк (14 декабря) предложил новую формулу для распределения энергии в спектре излучения абсолютно черного тела (закон Планка).
– Экспериментальное подтверждение закона излучения Планка (Г. Рубенс, Ф. Курлбаум).
– Дж. Рэлей вывел закон распределения энергии в излучении абсолютно черного тела, развитый в 1905 Дж. Джинсом (закон Рэлея – Джинса). Экспериментально подтвержден в 1901 Г. Рубенссм и Ф. Курлбаумом для длинных волн.

1900–02 гг. – Г. Рубенс и Э. Хаген выполнили измерения отражательной способюсти металлов, подтвердившие электромагнитную теорию света Максвелла.

1900 г. – П. Виллар открыл гамма-лучи.
– Дж Таунсенд построил теорию проводимости в газах и рассчитал коэффициенты диффузии заряженных частиц.

1901 г. – Ж. Перрен выдвинул гипотезу о планетарном строении атома (модель Перрена).
– Обнаружено физиологическое действие радиоактивного излучения (А. Беккерель, П. Кюри).
– О. Ричардсон установил зависимость плотности тока насыщения термоэлектронной эмиссии от температуры поверхности катода (закон Ричардсона).

1902 г. – Установлено отклонение каналовых лучей в электрическом и магнитном полях (В. Вин).
– Впервые экспериментально доказана зависимость массы электрона от скорости (В. Кауфман).
– Ф. Ленард установил уравнение фотоэффекта, в котором дал зависимость энергии фотоэлектронов от частоты света.

1902–03 гг . – Э. Резерфорд и Ф. Содди создали теорию радиоактивного распада и сформулировали закон радиоактивных превращений.
– Введение понятия электромагнитного импульса и получение формулы для электромагнитной массы электрона (М. Абрагам).

1902 г. – Вышла в свет книга Дж. Гиббса “Элементарные принципы статистической механики”, которая завершила построение классической статистической физики.

1903 г. – Дж. Дж. Томсон разработал модель атома, названную его именем (модель Томсона).
– Наблюдение непрерывного выделения теплоты солями радия и измерение энергии, выделяемой за 1 с (П. Кюри, А. Лаборд).
– П. Кюри предложил использовать период полураспада радиоактивного элемента в качестве эталона времени для определения абсолютного возраста земных пород.
– У. Рамзай и Ф. Содди экспериментально доказали образование гелия из радона.
– Э. Резерфорд доказал, что альфа-лучи состоят из положительно заряженных частиц. Первой на корпускулярную природу альфа-лучей указала в 1900 М. Склодовская-Кюри.
– Открытие эффекта сцинтилляций и использование его для регистрации заряженных частиц (У. Крукс, Г. Гейтель, Ю. Эльстер).
– А. А. Эйхенвалъд показал, что поляризованный немагнитный диэлектрик становится при движении намагниченным (опыт Эйхенвальда).

1904 г. – Х. Лоренц нашел релятивистские преобразования пространственных координат и времени, оставляющие неизменными электромагнитные явления при равномерном движении систем отсчета (преобразования Лоренца). В 1900 эти преобразования получил Дж. Лармор, а в 1887 близкие по типу преобразования использовал В. Фойгт.
– Х. Лоренц получил выражение для зависимости массы от скорости в случае электрона. Справедливость этой релятивистской формулы была подтверждена опытами А. Бухерера (1908) и др.
– Дж. Дк. Томсон ввел представление о том, что электроны в атоме разделяются на группы, образуя различные конфигурации, обусловливающие периодичность элементов. Первые идеи о внутренней структуре атома он высказал еще в 1898.
– Осуществлена поляризация рентгеновских лучей (Ч. Баркла).

1904 г. – Изобретена двухэлектродная электронная лампа - диод (Дж. Флеминг).

1905 г. – А. Эйнштейн в статье “К электродинамике движущихся сред” (поступила в редакцию журнала 30 июня), глубоко проанализировав понятие одновременности событий, доказал сохранение формы максвелловских уравнений относительно преобразований Лоренца, сформулировал специальный принцип относительности и принцип постоянства скорости света и на их основе создал специальную теорию относительности. (Неизменность формы уравнений электродинамики относительно преобразований Лоренца доказал также А. Пуанкаре в докладе на заседании Парижской АН 5 июня, в котором подчеркнул универсальность принципа относительности и предсказал конечность скорости распространения света.) Совместно с квантовой теорией специальная теория относительности составила фундамент физики ХХ в.
– А. Эйнштейн открыл закон взаимосвязи массы и энергии (в 1906 этот закон установил также П. Ланжевен).
– А. Эйнштейн выдвинул гипотезу о квантовом характере светового излучения (фотонная теория света). Постулированный Эйнштейном фотон открыт в 1922 А. Комптоном. Термин введен в 1929 Г. Льюисом.
– Объяснение А. Эйнштейном законов фотоэффекта на основании существования квантов света, или фотонов.
– Э. Швейдлер установил статистический характер закона превращения химических элементов, подтвержденный экспериментально Э. Регенером в 1908.
– Обнаружен эффект Допплера в каналовых лучах (И. Штарк).
– Разработка П. Ланжевеном классической теории диа- и парамагнетизма.

1905–06 г. – А. Эйнштейн и М. Смолуховский дали последовательное объяснение броуновского движения на основе молекулярно-кинетической теории, развив теорию флуктуаций.

1906 г. – М. Планк вывел уравнения релятивистской динамики, получив выражения для энергии и импульса электрона.
– А. Пуанкаре разработал первую лоренц-ковариантную теорию тяготения.
– Т. Лайман открыл спектральную серию в ультрафиолетовой части спектра водорода (серия Лаймана).
– Ч. Баркла открыл характеристические рентгеновские лучи.
– В. Нернст высказал утверждение, что энтропия химически однородного твердого или жидкого тела при абсолютном нуле температуры равна нулю (теорема. Нернста). Экспериментально доказана У. Джиоком, после чего стала называться третьим началом термодинамики.
– Предсказание В. Нернстом эффекта “вырождения газа”.
– Изобретен триод (Л. ди Форест)

1907 г. – А. Эйнштейн постулировал эквивалентность гравитации и инерции (принцип эквивалентности Эйнштейна) и начал разрабатывать релятивистскую теорию гравитации.
– Установлено, что изотопы свинца являются конечным продуктом в радиоактивных рядах (Б. Болюуд).
– Разработка А. Эйнштейном первой квантовой теории теплоемкости твердых тел. Введение им представления о распространении в кристалле монохроматических звуковых (упругих) волн.
– М. Планк провел обобщение термодинамики в рамках специальной теории относительности, заложив основы релятивистской термодинамики.
– П. Вейсс установил (независимо от П. Кюри, 1895) температурную зависимость магнитной восприимчивости парамагнетиков (закон Кюри – Вейсса).
– Выдвинута гипотеза о существовании в ферромагнетиках участков самопроизвольной намагниченности и разработана первая статистическая теория ферромагнетизма (П. Вейсс). Подобную идею высказал еще в 1892 Б. Л. Розинг.
– Открытие Э. Коттоном и А. Мутоном явления двойного лучепреломления в веществах, помещенных в магнитное поле, при распространении света в направлении, перпендикулярном полю (эффект Коттона – Мутона).

1908 г. – Г. Минковский вслед за А. Пуанкаре развил идею объединения трех измерений пространства и времени в одно четырехмерное псевдоевклидово пространство (пространство Минковского) и развил современный четырехмерный аппарат специальной теории относительности.
– А. Бухерер провел опыт, окончательно подтвердивший правильность релятивистской формулы Лоренца для зависимости массы электрона от скорости.
– В. Ритц улучшил предложенную в 1890 И. Ридбергом приближенную формулу для частот спектральных серий элементов, установив один из основных принципов систематики атомных спектров – комбинационный принцип (принцип Ридберга – Ритца).
– Ф. Пашен обнаружил спектральную серию атома водорода в инфракрасной области (серия Пашена).
– Г. Гейгер и Э. Резерфорд сконструировали прибор для регистрации отдельных заряженных частиц. В 1928 Гейгер усовершенствовал его с В. Мюллером (счетчик Гейгера – Мюллера).
– Получение Г. Камерлинг-Оннесом жидкого гелия и измерение его температуры.
– Ж. Перрен осуществил эксперименты по исследованию броуновского движения, окончательно доказавшие реальность существования молекул и подтвердившие атомно-молекулярную теорию строения вещества и кинетическую теорию теплоты.
– Э. Грюнейзен установил, что отношение коэффициента теплового расширения металла к его удельной теплоемкости не зависит от температуры (закон Грюнейзена).

1909 г. – Доказано, что альфа-частицы являются дважды ионизированными атомами гелия (Э. Резерфорд, Дж. Ройдс).

1909–10 гг. – Г. Гейгер и Э. Марсден выполнили эксперименты по рассеянию альфа-частиц в тонких металлических пленках, сыгравшие решающую роль в открытии Э. Резерфордом атомного ядра и в установлении планетарной модели атома.

1909 г. – А Эйнштейн рассмотрел флуктуации энергии равновесного излучения и получил формулу для флуктуаций энергии.
– Открытие связи между упругими и оптическими свойствами твердых тел (Э. Маделунг).
– Г. Камерлинг-Оннес получил температуру в 1,04 К.
– Вышла в свет книга В. И. Ленина “Материализм и эмпириокритицизм”, в которой дал глубокое толкование новых научных данных конца ХIХ – начала ХХ вв. в ведущих отраслях естествознания, показан революционный смысл этих фундаментальных открытий. Мысль В. И. Ленина о неисчерпаемости материи стала общим принципом естественнонаучного познания.

1910 г. – А. Гааз предложил мод“ль атома, в которой впервые сделана попытка связать квантовый характер излучения со структурой атома.

1910–14 гг. – Экспериментально доказана дискретность электрического заряда и впервые достаточно точно измерена величина заряда электрона (Р. Милликен).

Достижения физики 20 — 21 века открыли познания об элементарных частицах и их взаимодействии. До конца второй мировой войны только несколько частиц были известны, не было систематической теории, объясняющей их разнообразие и их свойства. Несмотря на успехи, достигнутые в 1930 даже ядерная физика была еще в зачаточном состоянии во многих отношениях. Ничего не было известно о составе нейтронов и протонов. Измерительные приборы были очень грубы с ограниченным диапазоном измерений.

Открытия новых частиц

За последние время был обнаружен целый «зоопарк» новых частиц, некоторые очень недолговечны. Для того чтобы исследовать такие частицы необходимо ускорение и разбиение их на другие частицы. Разработка новых ускорителей частиц, действующих при гораздо более высоких энергиях, было решающим фактором стремительного прогресса в физике элементарных частиц.

Для того чтобы отслеживать частицы до и после их взаимодействия с другими частицами в начале 1950-х годов был разработан ускоритель. Другие типы приборов обнаружения, как искровая камера или многопроволочная пропорциональная камера как детектор элементарных частиц, были разработаны и усовершенствованы позднее. Для того чтобы обнаруживать и измерять нейтрино, которые вряд ли вообще взаимодействуют с веществом, огромные помещения были построены глубоко под землей для устранения всех нежелательных излучений.

Физики-теоретики добились существенного прогресса в раскрытии принципов, регулирующих их взаимодействие. В начале 1960-х годов была разработана теория кварков (элементарных частиц входящих в состав протонов и нейтронов). Это открытие может объяснить многие из закономерностей более тяжелых частиц. Возможно открыто самое главное: новые принципы упорядочения частиц считаются основополагающими в физике.

В начале 21 века началось строительство ускорителя заряженных частиц адронного коллайдера.В настоящее время ученые с помощью коллайдера фиксируют результаты столкновения частиц на рекордных энергиях. С помощью этого ускорителя открыт бозон Хиггса.

Существование антиматерии

Еще один прорыв как достижения физики 20 века была экспериментальная демонстрация существования антиматерии. Материя и антиматерия быстро распадаются в чистую энергию. Это было предсказано, как теоретическое основание и предоставляет доказательства текущей теории фундаментальных законов природы.

Не следует забывать что, несмотря на прогресс в фундаментальной физике, все еще существует большой пробел в наших знаниях — разрыв, который необходимо заполнить.

Два главных столпа физики XX века: квантовая механика и общая теория относительности Эйнштейна, они взаимно несовместимы .

Их совместимость является абсолютно необходимым для последовательной физики, которая является целью дальнейшего теоретического прогресса. Эта цель может быть достигнута путем изменения, по крайней мере, одной из этих теорий существенным образом. Никто не знает к чему эта проблема может привести.

Ядерная физика

В 20 — 21 веке физика имеет огромное технологическое воздействие.

В результате развития атомной бомбы и как следствие увеличение знаний ядерной физики, были разработаны реакторы для производства электрической энергии путем использования тепла при реакции ядерного деления. С 1950 по это время мирное использование ядерной энергии было принято во всем мире. Многие промышленно развитые страны и некоторые развивающиеся страны сейчас используют ядерную энергию для производства электроэнергии.

Будущее ядерной энергии, однако, представляется несколько неопределенным из-за потенциально опасных радиоактивных отходов , которые она производит. Дальнейшие события в ядерной физике включают производство или обнаружение новых элементов, помимо уже известных.

Физическая оптика

Гигантские и фундаментальные шаги были сделаны в оптике. Это привело к разработке первого мощного электронного микроскопа в начале 1950-х годов. За ним последовал ионный микроскоп и сканирующий электронный микроскоп. Электронные микроскопы высокого разрешения обеспечивают проницательность в атомные структуры твердых тел.

В 1980-х годах был изобретен сканирующий микроскоп туннелирования. Это прототип сканирующего зондового микроскопа привел к разработке инструментов, которые позволяют визуализировать один атом. Родилась новая область технологии.

Сверхпроводимость

Сверхпроводимость была обнаружена в 1911.

При чрезвычайно низких температурах некоторые материалы теряют электрическое сопротивление. Таким образом, они могут проводить электричество без малейших потерь. Совершенно очевидно, что это явление имеет множество потенциальных технических приложений как, например, в чрезвычайно мощных магнитах. Но явление сверхпроводимости ученые не могли объяснить вплоть до второй половины 20 века.

В 1980-х впечатляющие успехи были достигнуты в производстве керамических материалов, которые демонстрируют сверхпроводимость при значительно более высоких температурах, чем ранее считалось возможным.

Изобретение лазера

В 1960 году был изобретен лазер. Он производит когерентный свет, который может быть направлен узким лучом. У лазеров оказались несметные технологические приложения. Они включают целый ряд различных измерительных приборов, таких как детекторы загрязнения воздуха, высокоскоростная фотография, новые запоминающие устройства для компьютеров, хирургические инструменты различных видов.

Открытие полупроводников

Возможно, наиболее распространенной научной инновацией и самым было открытие полупроводников.

Полупроводники, кристаллы, которые сочетают свойства электрических проводников и изоляторов. Исследования этих свойств привели к открытию транзистора в конце 1940-х.

Транзистор постепенно заменил вакуумные лампы и, в конце концов, в начале 1960-х годов, привел к интегральным микросхемам и микропроцессорам малого размера. Микропроцессоры имели огромное влияние на электротехнику. Их поразительная эффективность и размер вызвал множество приложений в самых различных областях. Чрезвычайно быстрое развитие компьютеров со значительно расширенной памятью стало возможным с появлением транзисторов, интегрированных в микропроцессорах. Практически все сегодняшние вычислительные и коммуникационные устройства основаны на этой технологии. Стоимость и размер вычислительной мощности была сокращена на несколько порядков. Кроме того при разработке и внедрении Интернета, который соединяет миллионы компьютеров сегодня, позволяет получить доступ к информации из всех уголков земного шара на беспрецедентном уровне и скорости. Масштабы потенциального воздействия современных информационных и коммуникационных технологий на общество могут быть сопоставимы с изобретением печатного станка.

Современные компьютеры и привели также к захватывающим достижениям в рамках фундаментальной науки, например в области искусственного интеллекта.

Еще одним событием, вытекающих из исследования полупроводников было изобретение фотоэлектрических ячеек , с помощью которых можно конвертировать свет в электрическую энергию. Они приносят надежду, что большую часть энергии необходимо будет преобразовывать непосредственно от солнца без значительного загрязнения.

 

Возможно, будет полезно почитать: