Множества и операции над множествами.

Математическим анализом называется раздел математики, занимающийся исследованием функций на основе идеи бесконечно малой функции.

Основными понятиями математического анализа являются величина, множество, функция, бесконечно малая функция, предел, производная, интеграл.

Величиной называется все что может быть измерено и выражено числом.

Множеством называется совокупность некоторых элементов, объединенных каким-либо общим признаком. Элементами множества могут быть числа, фигуры, предметы, понятия и т.п.

Множества обозначаются прописными буквами, а элементы множество строчными буквами. Элементы множеств заключаются в фигурные скобки.

Если элемент x принадлежит множеству X , то записывают x Х ( — принадлежит).
Если множество А является частью множества В, то записывают А ⊂ В ( — содержится).

Множество может быть задано одним из двух способов: перечислением и с помощью определяющего свойства.

Например, перечислением заданы следующие множества:
  • А={1,2,3,5,7} — множество чисел
  • Х={x 1 ,x 2 ,...,x n } — множество некоторых элементов x 1 ,x 2 ,...,x n
  • N={1,2,...,n} — множество натуральных чисел
  • Z={0,±1,±2,...,±n} — множество целых чисел

Множество (-∞;+∞) называется числовой прямой , а любое число — точкой этой прямой. Пусть a — произвольная точка числовой прямой иδ — положительное число. Интервал (a-δ; a+δ) называется δ-окрестностью точки а .

Множество Х ограничено сверху (снизу), если существует такое число c, что для любого x ∈ X выполняется неравенство x≤с (x≥c). Число с в этом случае называется верхней(нижней) гранью множества Х. Множество, ограниченное и сверху и снизу, называется ограниченным . Наименьшая (наибольшая) из верхних (нижних) граней множества называется точной верхней (нижней) гранью этого множества.

Основные числовые множества

N {1,2,3,...,n} Множество всех
Z {0, ±1, ±2, ±3,...} Множество целых чисел. Множество целых чисел включает в себя множество натуральных.
Q

Множество рациональных чисел .

Кроме целых чисел имеются ещё и дроби. Дробь — это выражение вида , где p — целое число, q — натуральное. Десятичные дроби также можно записать в виде . Например: 0,25 = 25/100 = 1/4. Целые числа также можно записать в виде . Например, в виде дроби со знаменателем "один": 2 = 2/1.

Таким образом любое рациональное число можно записать десятичной дробью — конечно или бесконечной периодической.

R

Множество всех вещественных чисел .

Иррациональные числа — это бесконечные непериодические дроби. К ним относятся:

Вместе два множества (рациональных и иррациональных чисел) — образуют множество действительных (или вещественных) чисел.

Если множество не содержит ни одного элемента, то оно называется пустым множеством и записывается Ø .

Элементы логической символики

Запись ∀x: |x|<2 → x 2 < 4 означает: для каждого x такого, что |x|<2, выполняется неравенство x 2 < 4.

Квантор

При записи математических выражений часто используются кванторы.

Квантором называется логический символ, который характеризует следующие за ним элементы в количественном отношении.

  • ∀- квантор общности , используется вместо слов "для всех", "для любого".
  • ∃- квантор существования , используется вместо слов "существует", "имеется". Используется также сочетание символов ∃!, которое читается как существует единственный.

Операции над множествами

Два множества А и В равны (А=В), если они состоят из одних и тех же элементов.
Например, если А={1,2,3,4}, B={3,1,4,2} то А=В.

Объединением (суммой) множеств А и В называется множество А ∪ В, элементы которого принадлежат хотя бы одному из этих множеств.
Например, если А={1,2,4}, B={3,4,5,6}, то А ∪ B = {1,2,3,4,5,6}

Пересечением (произведением) множеств А и В называется множество А ∩ В, элементы которого принадлежат как множеству А, так и множеству В.
Например, если А={1,2,4}, B={3,4,5,2}, то А ∩ В = {2,4}

Разностью множеств А и В называется множество АВ, элементы которого принадлежат множесву А, но не принадлежат множеству В.
Например, если А={1,2,3,4}, B={3,4,5}, то АВ = {1,2}

Симметричной разностью множеств А и В называется множество А Δ В, являющееся объединением разностей множеств АВ и ВА, то есть А Δ В = (АВ) ∪ (ВА).
Например, если А={1,2,3,4}, B={3,4,5,6}, то А Δ В = {1,2} ∪ {5,6} = {1,2,5,6}

Свойства операций над множествами

Свойства перестановочности

A ∪ B = B ∪ A
A ∩ B = B ∩ A

Сочетательное свойство

(A ∪ B) ∪ C = A ∪ (B ∪ C)
(A ∩ B) ∩ C = A ∩ (B ∩ C)

Счетные и несчетные множества

Для того, чтобы сравнить два каких-либо множества А и В, между их элементами устанавливают соответствие.

Если это соответствие взаимооднозначное, то множества называются эквивалентными или равномощными, А В или В А.

Пример 1

Множество точек катета ВС и гипотенузы АС треугольника АВС являются равномощными.

Множество – одно из основных понятий современной математики, используемое почти во всех ее разделах.

Во многих вопросах приходится рассматривать некоторую совокупность элементов как единое целое. Так, биолог, изучая животный и растительный мир данной области, классифицирует все особи по видам, виды по родам и т.д. Каждый вид является некоторой совокупностью живых существ, рассматриваемой как единое целое.

Для математического описания таких совокупностей и было введено понятие множества. По словам одного из создателей теории множеств – немецкого математика Георга Кантора (1845-1918), «множество есть многое, мыслимое нами как единое». Разумеется, эти слова не могут рассматриваться как математически строгое определение множества, такого определения не существует, поскольку понятие множества является исходным, на основе которого строятся остальные понятия математики. Но из этих слов ясно, что можно говорить о множестве натуральных чисел, множестве треугольников на плоскости.

Множества, состоящие из конечного числа элементов, называются конечными, а остальные множества – бесконечными. Например, множество китов в океане конечно, а множество рациональных чисел бесконечно. Конечные множества могут быть заданы перечислением их элементов (например, множество учеников в данном классе задается их списком в классном журнале). Если множество состоит из элементов , то пишут: . Бесконечные множества нельзя задать перечнем их элементов. Их задают обычно, указывая свойство, которым обладают все элементы данного множества, но не обладают никакие элементы, не принадлежащие этому множеству. Такое свойство называют характеристическим для рассматриваемого множества. Если - сокращенное обозначение предложения «элемент обладает свойством », то множество всех элементов, имеющих свойство , обозначают так: . Например, запись означает множество корней уравнения , т.е. множество . Может случиться, что не существует ни одного элемента, обладающего свойством (например, нет ни одного нечетного числа, которое делилось бы на 2). В этом случае во множестве нет ни одного элемента. Множество, не содержащее ни одного элемента, называется пустым. Его обозначают знаком .

Если элемент принадлежит множеству , то пишут: , в противном случае пишут: или . Множества, состоящие из одних и тех же элементов, называют равными (совпадающими). Например, равны множество равносторонних треугольников и множество равноугольных треугольников, так как это одни и те же треугольники: если в треугольнике все стороны равны, то равны и все его углы; обратно, из равенства всех трех углов треугольника вытекает равенство всех трех его сторон. Очевидно, что равны два конечных множества, отличающиеся друг от друга лишь порядком их элементов, например .

Всякий квадрат является прямоугольником. Говорят, что множество квадратов является частью множества прямоугольников, или, как говорят в математике, является подмножеством множества прямоугольников. Если множество является подмножеством множества , то пишут: или . Для любого множества верны включения и .

Из данных множеств и можно построить новые множества, применяя операции пересечения, объединения и вычитания. Пересечением множеств и называют их общую часть, т.е. множество элементов, принадлежащих как , так и . Это множество обозначают: . Например, пересечением двух геометрических фигур является их общая часть, пересечением множества ромбов с множеством прямоугольников – множество квадратов и т.д.

Объединением множеств и называют множество, составленное из элементов, принадлежащих хотя бы одному из этих множеств. В различных вопросах классификации используется представление множеств в виде объединения попарно непересекающихся подмножеств. Например, множество многоугольников является объединением множества треугольников, четырехугольников, ..., -угольников.

Если применять операции объединения и пересечения к подмножествам некоторого множества , то снова получатся подмножества того же множества . Эти операции обладают многими свойствами, похожими на свойства операций сложения и умножения чисел. Например, пересечение и объединение множеств обладают свойствами коммутативности и ассоциативности, пересечение дистрибутивно относительно объединения, т.е. для любых множеств и верно соотношение и т.д. Но в то же время у операций над множествами есть ряд свойств, не имеющих аналогов в операциях над числами. Например, для любого множества верны равенства и , верен второй закон дистрибутивности и т.д.

С помощью свойств операций над множествами можно преобразовывать выражения, содержащие множества, подобно тому как с помощью свойств операций над числами преобразовывают выражения в обычной алгебре. Возникающая таким путем алгебра называется булевой алгеброй, по имени английского математика и логика Дж. Буля (1815-1864), который занимался ею в связи с проблемами математической логики. Булевы алгебры находят многочисленные применения, в частности в теории электрических сетей.

Основной характеристикой конечного множества является число его элементов (например, множество вершин квадрата содержит 4 элемента). Если в множествах и поровну элементов, например если , , то из элементов этих множеств можно составить пары , причем каждый элемент из , равно как и каждый элемент из , входит в одну, и только одну, пару. Говорят, что в этом случае между элементами множеств и установлено взаимно-однозначное соответствие. И наоборот, если между двумя конечными множествами и можно установить взаимно-однозначное соответствие, то в них поровну элементов.

Г. Кантор предложил аналогичным образом сравнивать между собой бесконечные множества. Говорят, что множества и имеют одинаковую мощность, если между ними можно установить взаимно-однозначное соответствие. Сравнивая таким путем множества, составленные из чисел, Кантор показал, что существует взаимно-однозначное соответствие между множеством натуральных чисел и множеством рациональных чисел, хотя множество натуральных чисел является лишь частью множества рациональных чисел. Таким образом, в теории бесконечных множеств теряет силу утверждение, что «часть меньше целого».

Множества, имеющие ту же мощность, что и множество натуральных чисел, называют счетными. Таким образом, множество рациональных чисел счетно. Важнейший пример несчетного множества – множество всех действительных чисел (или, что то же самое, множество точек на прямой линии). Так как прямая линия непрерывна, то такую несчетную мощность называют мощностью континуума (от латинского continuum - «непрерывный»). Мощность континуума имеют множества точек квадрата, куба, плоскости и всего пространства.

В течение долгих лет математики решали проблему: существует ли множество, мощность которого является промежуточной между счетной и мощностью континуума. В 60-х гг. нашего века американский математик П. Коэн и чешский математик П. Вопенка почти одновременно независимо друг от друга доказали, что как существование такого множества, так и отсутствие его не противоречат остальным аксиомам теории множеств (подобно тому, как принятие аксиомы о параллельных или отрицание этой аксиомы не противоречат остальным аксиомам геометрии).

Теория множеств.

Множества. Пустое множество. Универсальное множество. Подмножества. Собственное подмножество. Способы задания множеств. Мощность множества. Равномощные множества. Конечные и счётные множества. Операции над множествами (объединение, пересечение, дополнение, разность, симметрическая разность). Законы алгебры множеств. Характеристические функции. Декартово произведение множеств. Отношения и свойства отношений. Функции на множествах.

Определение множества.

Множество - это совокупность определённых различаемых объектов, причём таких, что для каждого можно установить, принадлежит этот объект данному множеству или нет.

Множества обычно обозначаются заглавными латинскими буквами, а элементы множества - строчными. Элементами множеств могут быть любые объекты, например, числа, символы, слова, объекты реального мира. В частности, элементами множества могут быть другие множества.

Например:

A = { a, b, c } - множество A состоящее из 3 элементов

N = { 1, 2, 3, … } - множество N целых чисел

Элементы множества являются уникальными, то есть, один и тот же элемент не может включаться в множество несколько раз (в отличие от векторов и мультимножеств). Считается, что при добавлении в множество элемента, который в нем уже присутствует, множество не меняется.

Порядок записи элементов множества не является существенным (в отличие от записи элементов векторов, где порядок важен).

Таким образом, множества считаются равными, если они состоят из одних и тех же элементов.

Если некоторый объект является элементом множества , то этот факт записывается следующим образом: и читается «x принадлежит А». Аналогично, если элемент не является элементом множества , используется запись («y не принадлежит А»).

Пустое множество – это множество, не содержащее элементов. Пустое множество может быть обозначено с использованием фигурных скобок: = { }. Однако, множество B = { } не является пустым: это множество, содержащее один элемент, который является пустым множеством.

Универсальное множество Е – множество всех объектов, рассматриваемых в данной задаче.

Конечные и бесконечные множества. Если количество элементов множества конечно (то есть существует натуральное число, равное количеству элементов множества), то такое множество называется конечным. В противном случае множество называется бесконечным.

Мощность множества или кардинальное число |A| (иногда card (A)). Мощность множества является обобщением понятия количества элементов на бесконечные множества. Для конечных множеств мощность равна количеству элементов множества.

Мощность пустого множества по определению равна нулю: .

Равномощные множества – это множества, между элементами которых можно установить взаимно однозначное соответствие.

Счётное множество – множество, равномощное множеству натуральных чисел.

Множество А называют подмножеством множества B (обозначается либо ) если все элементы, которые принадлежат множеству A, так же принадлежат и множеству B.

В этом случае B называют надмножеством A

Пустое множество является подмножеством любого множества.

Любое множество является подмножеством самого себя:

Что такое множество в математике? Математическое множество - это несколько отдельных элементов, рассматриваемых, как единое целое. Если обозначить такой элемент буквой a, а само множество - буквой А, то запись будет выглядеть следующим образом:

проговаривается эта запись так: a принадлежит А, или А содержит а, или а - элемент А.

Для перечисления элементов множества используются фигурные скобки - {}. То есть, например, множество, в котором а ∈ А, b ∈ A и c ∈ A, будет записываться в таком виде:

Виды множеств.

Пустые множества.

Пустое множество – это то множество, которое вообще не содержит никаких элементов. Обозначается оно цифрой 0 или специальным значком ∅.

Примером пустого множества может служить любое нелогичное понятие , противоречащее самому себе - «множество птиц, живущих на дне океана», или «множество деревьев на Луне». Поскольку оба множества лишены смысла и не отвечают реальности, то, следовательно, они являются пустыми. Скажем, количество деревьев на Луне – 0, поэтому «множество деревьев на Луне» будет пустым (не будет содержать ни одного элемента).

Равные множества.

Равные множества – это два или более множеств, состоящих из равных наборов элементов. Приведём пример. Скажем, все члены Вашей семьи находятся на кухне. Таким образом, Множество «Члены семьи на кухне» будет равно множеству «Члены семьи в квартире».

Если два множества - А и B - состоят из одинакового набора элементов, то они будут равны, то есть А = B. Элементы множеств могут перечисляться в любой последовательности, на результат это никак не влияет. Множество {a, b, c} можно с тем же успехом записать, как {a, c, b}, или {с, b, a}, или {b, c, a}.

Подмножества и надмножества.

Если множества А и B состоят из одинаковых элементов {a, b, c}, то А будет считаться подмножеством B, а B - надмножеством А. Записывается это следующим образом:

A ⊆ B, B ⊇ A.

Бывает так, что множество В содержит в себе каждый из элементов множества А, но в то же время в нем присутствуют и другие элементы, множеству А не принадлежащие. В этом случае множество В становится собственным надмножеством А, в то время как множество А становится собственным подмножеством В.

Иначе говоря, если А ⊆ В, но при этом А ≠ В, то А ⊂ В, В ⊃ А.

В математике понятие множества является одним из основных, фундаментальным, однако единого определения множества не существует. Одним из наиболее устоявшихся определений множества является следующее: под множеством понимают любое собрание определённых и отличных друг от друга объектов, мыслимых как единое целое. Создатель теории множеств немецкий математик Георг Кантор (1845-1918) говорил так: "Множество есть многое, мыслимое нами как целое".

Множества как тип данных оказались очень удобными для программирования сложных жизненных ситуаций, так как с их помощью можно точно моделировать объекты реального мира и компактно отображать сложные логические взаимоотношения. Множества применяются в языке программирования Паскаль и один из примеров решения мы ниже разберём. Кроме того, на основе теории множества создана концепция реляционных баз данных, а на основе операций над множествами - реляционная алгебра и её операции - используемые в языках запросов к базам данных, в частности, SQL.

Пример 0 (Паскаль). Существует набор продуктов, продаваемых в нескольких магазинах города. Определить: какие продукты есть во всех магазинах города; полный набор продуктов в городе.

Решение. Определяем базовый тип данных Food (продукты), он может принимать значения, соответствующие названиями продуктов (например, hleb). Объявляем тип множества, он определяет все подмножества, составленные из комбинаций значений базового типа, то есть Food (продукты). И формируем подмножества: магазины "Солнышко", "Ветерок", "Огонёк", а также производные подмножества: MinFood (продукты, которые есть во всех магазинах), MaxFood (полный набор продуктов в городе). Далее прописываем операции для получения производных подмножеств. Подмножество MinFood получается в результате пересечения подмножеств Solnyshko, Veterok и Ogonyok и включает те и только те элементы этих подмножеств, которые включены в каждое их этих подмножеств (в Паскале операция пересечения множеств обозначается звёздочкой: A * B * C, математическое обозначение пересечения множеств дано далее). Подмножество MaxFood получается в результате объединения тех же подмножеств и включает элементы, которые включены во все подмножества (в Паскале операция объединения множеств обозначается знаком "плюс": A + B + C, математическое обозначение объединения множеств дано далее).

Код PASCAL

Program Shops; type Food=(hleb, moloko, myaso, syr, sol, sahar, maslo, ryba); Shop = set of Food; var Solnyshko, Veterok, Ogonyok, MinFood, MaxFood: Shop; Begin Solnyshko:=; Veterok:=; Ogonyok:=; ... MinFood:=Solnyshko * Veterok * Ogonyok; MaxFood:=Solnyshko + Veterok + Ogonyok; End.

Какие бывают множества

Объекты, составляющие множества - объекты нашей интуиции или интеллекта - могут быть самой различной природы. В примере в первом параграфе мы разобрали множества, включающие набор продуктов. Множества могут состоять, например, и из всех букв русского алфавита. В математике изучаются множества чисел, например, состоящие из всех:

Натуральных чисел 0, 1, 2, 3, 4, ...

Простых чисел

Чётных целых чисел

и т.п. (основные числовые множества рассмотрены в этого материала).

Объекты, составляющие множество, называются его элементами. Можно сказать, что множество - это "мешок с элементами". Очень важно: в множестве не бывает одинаковых элементов.

Множества бывают конечными и бесконечными. Конечное множество - это множество, для которого существует натуральное число, являющееся числом его элементов. Например, множество первых пяти неотрицательных целых нечётных чисел является конечным множеством. Множество, не являющееся конечным, называется бесконечным. Например, множество всех натуральных чисел является бесконечным множеством.

Если M - множество, а a - его элемент, то пишут: a M , что означает "a принадлежит множеству M ".

Из первого (нулевого) примера на Паскале с продуктами, которые есть в тех или иных магазинах:

hleb VETEROK ,

что означает: элемент "hleb" принадлежит множеству продуктов, которые есть в магазине "VETEROK".

Существуют два основных способа задания множеств: перечисление и описание.

Множество можно задать, перечислив все его элементы, например:

VETEROK = {hleb , syr , maslo } ,

A = {7 , 14 , 28 } .

Перечислением можно задать только конечное множество. Хотя можно сделать это и описанием. Но бесконечные множества можно задать только описанием.

Для описания множеств используется следующий способ. Пусть p (x ) - некоторое высказывание, которое описывает свойства переменной x , областью значений которых является множество M . Тогда через M = {x | p (x )} обозначаентся множество, состоящее из всех тех и только тех элементов, для которых высказывание p (x ) истинно. Это выражение читается так: "Множество M , состоящее из всех таких x , что p (x ) ".

Например, запись

M = {x | x ² - 3x + 2 = 0}

Пример 6. Согласно опросу 100 покупателей рынка, купивших цитрусовые, апельсины купили 29 покупателей, лимоны - 30 покупателей, мандарины - 9, только мандарины - 1, апельсины и лимоны - 10, лимоны и мандарины - 4, все три вида фруктов - 3 покупателя. Сколько покупателей не купили ни одного вида перечисленных здесь цитрусовых? Сколько покупателей купили только лимоны?

Операция декартова произведения множеств

Для определения ещё одной важной операции над множествами - декартова произведения множеств введём понятие упорядоченного набора длины n .

Длиной набора называется число n его компонент. Набор, составленный из элементов , взятых именно в этом порядке, обозначается . При этом i я () компонента набора есть .

Сейчас последует строгое определение, которое, возможно, не сразу понятно, но после этого определения будет картинка, по которой станет понятно, как получить декартово произведение множеств.

Декартовым (прямым) произведением множеств называется множество, обозначаемое и состоящее из всех тех и только тех наборов длины n , i -я компонента которых принадлежит .

Например, если , , ,

 

Возможно, будет полезно почитать: