Инновации. Дмитрий Степченков: в Обнинске о рении Генератор рения 188

Суициды раковых больных бывают чаще всего от непреодолимой боли, когда доступные обезболивающие препараты, кроме наркосодержащих, не помогают. Впрочем, оказывается, есть альтернативное средство — радионуклидная терапия


В России официально зарегистрировано 2,3 млн онкологических больных. В год фиксируется не менее 200 тыс. случаев вновь поставленного диагноза "рак". И у более чем 60% пациентов это уже третья или четвертая стадия, сопровождаемая сильными болями.

Таргетная диагностика


Стандартная схема глушения боли при раковых метастазах — это различные препараты с обезболивающим эффектом. Сначала что-то из группы нестероидных противовоспалительных средств, потом серьезнее, а в конечном счете пациент выходит на наркосодержащие препараты.

Неужели нет других методов? Есть, только широкой общественности они мало известны. Между тем радионуклидная терапия развивается в мире весьма интенсивно, в том числе в России. ЗАО "Фарм-Синтез" завершает клинические исследования оригинального радиофармацевтического препарата для терапии метастазов в скелете. Одна инъекция — и у большинства пациентов происходит существенное уменьшение болей на период до шести месяцев. Кто-то совсем отказывается от анальгетиков, кто-то значительно снижает дозы, а во многих случаях наблюдается даже регрессия метастазов, то есть улучшается качество и увеличивается продолжительность жизни.

Долгие годы в радионуклидной терапии метастазов в скелете применялись изотопы стронций-89 и самарий-153, которые помимо опухоли оказывали негативное воздействие на весь организм.

Но сейчас речь идет о препарате нового поколения. Изотоп, на базе которого он создан, обладает малой токсичностью, а носитель, доставляющий его в организм, идет точно к цели — опухоли. Цель по-английски "target", поэтому такие нацеленные препараты называют таргетными.

"Раньше врачи и подумать не могли о том, что можно добиться высокоспецифичного накопления терапевтического радиофармацевтического препарата именно в опухоли, воздействовать непосредственно на нее, минимально облучая другие органы. Наш препарат концентрируется локально — в метастазе, а значит, облучение идет изнутри самих очагов. И здоровые органы и ткани оберегаются от него,— поясняет Лев Волознев, руководитель отдела радиофармацевтических препаратов ЗАО "Фарм-синтез".— Предпосылкой для синтезирования терапевтического препарата была другая разработка — радиофармацевтический препарат для диагностики метастазов в скелете, который уже применяется в лечебных учреждениях России. Там носитель — золедроновая кислота, а изотоп — технеций-99м. Лучевая нагрузка на организм, которую получает человек при таком методе, вполне сравнима с облучением, которое человек получает, совершив трансатлантический перелет на самолете".

Диагностика проводится в гамма-камерах, которые регистрируют излучение изотопа (отображающееся на экране монитора как свечение) и формируют томографические снимки. Поскольку препарат накапливается именно в метастазе, то если есть свечение в скелете, значит, есть метастаз.

Идеальная пара


"Потом мы задались вопросом: а не навесить ли на золедроновую кислоту какой-нибудь более серьезный, бета-излучающий изотоп, чтобы оказывал терапевтический эффект? — продолжает Лев Волознев.— Конечно, лучевая нагрузка возрастет. Но самое главное, чтобы поглощенная доза максимально оставалась в метастазе. Этого мы и добились с комплексом золедроновой кислоты и рением-188".

Рений-188 — один из самых мощных бета-излучающих радионуклидов. Поток бета-частиц интенсивно воздействует на опухолевую ткань, патологические клетки, разрушающие кость, клетки, стимулирующие патологическое костеобразование, а также нервные окончания. Короткий период полураспада изотопа (17 часов) позволяет быстро достичь клинического эффекта, а костный мозг при этом не успевает пострадать. В итоге, по словам разработчиков, получилась "идеальная пара": золедроновая кислота, меченная технецием-99м,— диагностика, золедроновая кислота с рением-188 — терапия. В следующем году "Фарм-синтез" рассчитывает свой новый препарат для терапии метастазов в скелете уже вывести на рынок.

Стратегия "идеальной пары" лежит в основе современного направления медицины — тераностики ("theranostics", англ., от "therapy" — "лечение", "diagnostics" — "диагностика"), то есть создания препаратов для диагностики и терапии заболеваний на основе одной молекулярной платформы. Если золедроновая кислота с технецием-99м накопилась в метастазе и зарегистрировала распространение опухоли, то следом назначают золедроновую кислоту с рением-188, которая окажет терапевтический эффект.

В области диагностики и терапии нейроэндокринных опухолей у "Фарм-синтеза" тоже есть собственные разработки. Стратегия та же: носитель — пептидная молекула, которая связывается с рецепторами на поверхности опухоли, а на нее навешиваются различные изотопы. Индий-111 — для однофотонно-эмиссионной томографии, галлий-68 — для позитронно-эмиссионной томографии, а лютеций-177 — для радионуклидной терапии.

"Выявление болезни на ранних стадиях — важная задача,— поясняет Лев Волознев.— Собственно, поэтому основной вектор применения радиофармпрепаратов уходит в область диагностических направлений. Мы же стараемся это немного изменить и помимо препаратов для диагностики опухолей методами однофотонно-эмиссионной и позитронно-эмиссионной томографии создаем такие, которые диагностируют и следом лечат".

"Уникальность и перспективность изотопа рения-188 стала одной из причин организации осенью текущего года первого Международного конгресса по рению-188 (1WCRe, г. Коимбаторе, Индия),— дополняет Лев Волознев.— Конечно, мы выступим там с докладами. То есть нам удалось быть на уровне мировых разработок в этом направлении — нас знают, нас приглашают".

На ведущей международной конференции International Conference on Radiopharmaceutical Therapy (ICRT-2013) в Маниле (Филиппины) в 2013 году доклад исследователей ЗАО "Фарм-синтез" (Татьяны Кочетовой, д.м.н. Сергея Ширяева под руководством д.м.н. Валерия Крылова) по теме клинических исследований золедроновой кислоты с рением-188 признан лучшей научной работой. В текущем году новые данные по разработке были представлены на международной конференции по радионуклидной терапии ICRT-2015 4 мая в Инсбруке (Австрия).

Расходы при двух видах терапии метастатического поражения скелета (на пациента)

По данным ЗАО "Фарм-Синтез".

Технология облегчения


Разработать оригинальный препарат — дело достаточно затратное, в отличие от выпуска дженериков — копий уже созданного кем-то лекарства, чем сегодня многие и занимаются. К тому же такие разработки относятся к венчурным: если 5% из них достигает результата, это считается высокой эффективностью. По словам Льва Волознева, фармацевтические компании тратят на научные разработки 10-20% и более объема вырученных средств.

В нынешней экономической ситуации у отечественного разработчика возникают дополнительные проблемы — слишком высока доля импортной составляющей в виде оборудования, расходных материалов и не только этого. Некоторые виды исследований приходится заказывать за рубежом, потому что наши научные лаборатории по тем или иным причинам не могут их выполнить.

"Нас приглашают в Госдуму, Минпромторг, правительство РФ, где совместно пытаемся найти решения,— отмечает председатель совета директоров ЗАО "Фарм-синтез" Анна Назаренко.— Но нужно понимать, что результаты получим не завтра. Это достаточно серьезные и долгосрочные программы. И мы надеемся, что благодаря им в России будет создана мощная, адекватная современная система оказания лечебно-диагностической помощи". Правда, чтобы выстроить такую систему, как говорят специалисты, создать препарат мало. Очень много зависит от наличия специалистов в области ядерной медицины и оснащения клиник серьезным технологическим оборудованием.

По экспертным данным, в радионуклидной диагностике нейроэндокринных опухолей нуждаются до 3 тыс. человек ежегодно, а прошли необходимые исследования в прошлом году около 100. Все — в Российском онкологическом научном центре им. Н. Н. Блохина: больше негде. Радионуклидная терапия метастатического поражения скелета ежегодно необходима 14 тыс. пациентов, а получают ее не более 300.

Инновационные продукты ЗАО "Фарм-синтез", которые проходят сейчас разные этапы клинических исследований, могут изменить ситуацию. Фактически клиники будут получать не просто лекарство, а технологию. Так, препарат для лечения метастазов в скелете синтезируется прямо в отделении радионуклидной терапии и используется в амбулаторном режиме, без применения "горячих" палат. Рений-188 получают из генератора размером с двухлитровую банку, достаточно простого и удобного в использовании. Изотоп можно получать каждые три дня со сроком эксплуатации генератора до трех месяцев. Таким образом, один генератор даст возможность 70 пациентам полгода жить без боли.

Вопрос теперь в другом: смогут ли обычные клиники установить у себя необходимое оборудование? На него пока, к сожалению, ответа нет. Так же, как и на другой вопрос — об отдельном финансировании радионуклидной терапии метастатического поражения скелета да и вообще ядерной медицины. Тем более сейчас, когда финансовые обязанности государство передало страховщикам. В любом случае, по мнению председателя комитета по охране здоровья Государственной думы России Сергея Калашникова, национальная онкологическая программа должна быть шире, чем просто решение вопросов оснащения клиник новой аппаратурой и обеспечения лекарствами пациентов.

Анна Подпальная


Томографические снимки пациента после введения золедроновой кислоты, меченной рением-188, сделанные в ходе клинических исследований в МРНЦ им. Ф.И. Цыба. Светящиеся очаги — метастазы, в которых накапливается радиофармацевтический препарат

Научно-технический семинар "Re-188 и радиофармацевтические препараты на его основе. Перспективы развития и применения" прошёл 21 июня 2018 года на базе ГНЦ РФ - ФЭИ.

На полях мероприятия на вопросы корреспондентов электронного издания сайт ответил начальник лаборатории ГНЦ РФ - ФЭИ Дмитрий СТЕПЧЕНКОВ.

ПРОДОЛЖЕНИЕ ПОСЛЕ ФОТО

Дмитрий Степченков, фото Сергей Стожилов

Дмитрий Владимирович, пожалуйста, несколько слов о семинаре.

Семинар посвящён генераторам рения-188, радиоактивного изотопа, использующегося в ядерной медицине для проведения терапевтических процедур. На его основе изготавливаются остеотропные препараты, то есть препараты, способные усваиваться в костях.

В мире для лечения костных метастаз используются различные радиофармпрепараты, в том числе на основе хлорида стронция-89 или самария-153. Но у них есть свои недостатки.

Так, у самария-153 относительно короткий период полураспада, порядка 46 часов. Транспортировать его от производителя до медицинского учреждения возможно только в тех случаях, когда доставка занимает небольшое время. А препараты на основе стронция в нашей стране тоже не получили широкого распространения.

Генераторы рения удобны в транспортировке на любые расстояния. Это относительно небольшие изделия. Вес собственно генератора составляет примерно 15 кг, а вес контейнера с полностью укомплектованным набором - примерно 20 кг. Получают рений-188 из генератора непосредственно в медицинском учреждении.

По какой реакции в генераторе получается рений-188?

Материнский изотоп - вольфрам-188. Он претерпевает бета-распад с периодом 69,4 суток, в результате которого получается рений-188, а он в свою очередь испытывает бета-распад с образованием стабильного осмия-188.

Важное преимущество рения-188 с точки зрения ядерной медицины состоит в том, что его бета-распад сопровождается гамма-линией. Бета-излучение даёт терапевтический эффект, а гамма-составляющая позволяет получить распределение введённого радиофармпрепарата по организму, то есть обеспечивает визуализацию.

Где производится вольфрам-188?

Вольфрам-188 нарабатывается в высокопоточных реакторах. В мире есть два крупнейших производителя этого изотопа - реактор HFIR в Окриджской национальной лаборатории (США) и димитровградский НИИАР, где он производится в нейтронной ловушке реактора СМ.

Насколько мы знаем, на HFIR сейчас вольфрам-188 практически не производится, а вот на российском реакторе работы по его получению продолжаются.

Возможно ли использовать для наработки вольфрама-188 реакторы с менее высокими потоками, чем в HFIR или СМ?

Всё упирается в физику и экономику. В связи с тем, что наработка вольфрама-188 происходит путём облучения вольфрама-186 через промежуточную стадию образования относительно короткоживущего изотопа вольфрам-187, то на реакторе с тепловым спектром нейтронов не удастся получить значимое количество вольфрама-188. Кроме того, он будет содержать примесь вольфрама-187.

На высокопоточных реакторах с точки зрения наработки вольфрама-188 мы добиваемся оптимальной продолжительности кампании облучения с максимальным выходом продукта.

Первые работы по медицинскому применению рения-188 в нашей стране велись в 80-ые годы Институтом биофизики Минздрава СССР (в настоящее время - ФГБУ ГНЦ ФМБЦ им. А.И.Бурназяна ФМБА России).

Они совпали по времени с длительным остановом реактора СМ-2, поэтому облучение вольфрамовых мишеней проводили на реакторе ИЯФ АН Узбекистана с плотностью потока менее 10 14 н/см 2 /c. - Прим. сайт.

Какие задачи по рению-188 выполняет ФЭИ?

Наш институт осуществляет переработку материнского сырья (соединения вольфрама-188), получаемого в АО "ГНЦ НИИАР". Мы делаем из него активную фармацевтическую субстанцию, которая потом применяется в генераторах рения-188.

Генеральный директор АО «ГНЦ РФ - ФЭИ», доктор физико-математических наук Андрей Говердовский

Государственный научный центр Российской Федерации - Физико-энергетический институт имени А.И. Лейпунского - старейшая в атомной отрасли многопрофильная научно-исследовательская организация, 70-летие которой мы будем отмечать в мае 2016 года.

Основные усилия коллектива направлены на создание новых энергетических технологий, использующих энергию атомного ядра. На счету института ряд серьезных разработок, реализованных в промышленности и обороне. Однако направленность на текущие и подчас неудовлетворенные потребности населения занимают значимую часть научной и производственной стратегии ФЭИ. В первую очередь, это конечно ядерная медицина в самом широком смысле. В этой области мы не ограничиваемся лишь производством изотопов, пусть даже самых дорогих и востребованных, но и создаем на их основе радиофармпрепараты. При этом работаем в тесной кооперации с медиками.

Последний вполне удачный пример - микроисточники для брахитерапии. Другое серьезное направление - нейтрон-захватная терапия. Если тридцать лет назад использовался ядерный реактор, то сегодня практически готов ускорительный терапевтический комплекс. На очереди обоснование и создание ускорительного изотопно-терапевтического комплекса.

Главная ценность института - это люди. В институте сложился очень стойкий профессиональный коллектив с которым можно уверенно смотреть в будущее.

В настоящее время у радиохимиков ФЭИ имеется большой задел наработанных технологий как по ядерной медицине, так и по общепромышленным технологиям применения изотопов.

Институт осуществляет широкое научно-техническое сотрудничество с ведущими научными организациями России, СНГ, многих стран мира.

ГНЦ РФ - ФЭИ вносит существенный вклад в решение целого ряда проблем борьбы за здоровье человека.

ФЭИ для ядерной медицины

Заместитель директора отделения физико-химических технологий - начальник научно-производственного комплекса изотопов и радиофармпрепаратов АО «ГНЦ РФ - ФЭИ», кандидат технических наук Николай Нерозин

Вот уже почти 30 лет в Физико-энергетическом институте им. А.И. Лейпунского проводятся работы, направленные на развитие ядерной медицины в России. Первой ласточкой были генераторы технеция и молибден-99 для их зарядки. Время было интересное: во-первых, перестройка, а во-вторых, дело новое, хотя в рамках того, что делали до сих пор, но по другим программам и для других целей. Буквально через несколько лет было налажено и пущено производство молибдена-99, а за ним и генераторов технеция-99м. Большую поддержку и непосредственную помощь в организации выпуска генераторов оказали сотрудники тогдашнего Института биофизики Минздрава СССР.

Вслед за генератором технеция-99м стали разрабатывать технологии выделения радиоактивных изотопов из облученного топлива, предназначенных для использования в медицинских целях. Для радиохимиков нашего института задача не новая, однако изотопы нужны совершенно другого уровня качества как по химическим, так и по радионуклидным примесям. Благодаря квалифицированным кадрам радиохимиков и их огромному опыту, накопленному в процессе многолетних работ в области радиохимической переработки облученного ядерного топлива, удалось за короткий срок разработать и внедрить технологии выделения целого ряда таких радиоактивных изотопов. Кроме того, были созданы и внедрены уникальные методы их очистки, чтобы удовлетворить особые требования, предъявляемые к продукции медицинского назначения по уровню химических и особенно радиоактивных примесей.

В настоящее время АО «ГНЦ РФ - ФЭИ» производит и поставляет на внутренний и зарубежный рынки более 25 наименований радиоизотопной продукции для ядерной медицины, промышленности и научных исследований (рис. 1 ). К сожалению, из всего списка выпускаемой продукции российскими потребителями востребованы только некоторые позиции.

В настоящее время наши усилия направлены не только на расширение номенклатуры продуктовой линейки продукции для отечественного потребителя, но и на продажу за рубеж конечной высокотехнологичной продукции вместо поставок сырья. Возможности для этого у нас есть. Есть большие компетенции с оправданными амбициями, есть высококвалифицированные специалисты, соответствующая инфраструктура и, особенно, имеется большое желание вывести на передовые рубежи в области ядерной медицины не только АО «ГНЦ РФ - ФЭИ», но и первый Наукоград России г. Обнинск, в котором изначально заложены все предпосылки к этому.

Перспективные проекты

Недавно была утверждена Стратегия развития изотопного бизнеса Госкорпорации «Росатом». Она предполагает в ближайшие годы существенный скачок в развитии различных изотопных производств, включая производство изотопов, радиофармпрепаратов, источников ионизирующих излучений, изделий медицинской техники. ФЭИ подготовил перечень проектов, которые, по нашему мнению, внесут существенный вклад в развитие изотопного бизнеса Госкорпорации «Росатом», позволят увеличить выручку и долю изотопной продукции корпорации на мировом рынке.

Микроисточники для брахитерапии

В первую очередь - это проект, направленный на увеличение производства микроисточников для брахитерапии. В настоящее время более 10 000 россиян нуждаются в этой операции, и участок, который создан сейчас в ФЭИ, не сможет удовлетворить всех нуждающихся своей продукцией, нужен совершенно другой уровень производства, который предполагает создание оборудования для автоматических линий. На разработку такого оборудования и создание высокопроизводительного производства и направлен представленный проект.

Производство альфа-излучателей

Если представленный проект по микроисточникам не требует НИР, то следующий предполагает инновационную составляющую, прежде чем создавать производство. Это проект по разработке технологии и организации производства альфа-излучателей.

В последнее время, с ростом числа онкологических заболеваний, активно ведутся поиск и исследование радионуклидов, которые обладали бы оптимальными терапевтическими свойствами, такими как высокая линейная передача энергии и малая длина пробега частицы. Наиболее подходящими по этим свойствам считаются альфа-излучатели по сравнению с бета-излучателями.

Проведенные в различных странах исследования показали, что альфа-излучатели успешно можно применять для лечения микрометастазов в начальной стадии развития, лейкемии, рака легких и других. Одним из наиболее перспективных альфа-излучающих нуклидов по своим ядерно-химическим свойствам является актиний-225 и висмут-213, дочерний продукт распада актиния-225.

В развитых странах сейчас интенсивно ведутся исследования, направленные на разработку медицинских препаратов на основе этих изотопов, и по некоторым препаратам уже проводятся клинические испытания. С приходом в практическую медицину альфа-излучающих радионуклидов ядерная медицина перейдет на совершенно иной уровень борьбы с онкологическими и другими заболеваниями - молекулярный, который во много раз эффективнее существующих и не ведет к повреждению здоровых тканей, так как воздействует исключительно на пораженную клетку. В настоящее время потребность в актинии-225 в 10 раз превышает его наличие, и этот дефицит из года в год будет увеличиваться. Проект довольно-таки амбициозный, который не только позволит ликвидировать существующий дефицит, но и даст российским производителям контролировать рынок этого продукта.

Наработка изотопов на растворном реакторе

В связи с ситуацией на мировом рынке молибдена-99 в ближайшие годы появится возможность завоевать 20-25% этого рынка, и надо воспользоваться этой возможностью. В качестве альтернативы получения молибдена-99 на реакторе РБМК ФЭИ предлагает воспользоваться идеей по наработке молибдена-99 и других востребованных изотопов на растворном реакторе, проект которого уже более 25 лет прорабатывается в институте. Растворные реакторы, как показывает мировой опыт их эксплуатации, обладают высокой ядерной и радиационной безопасностью.Безопасность обеспечивается в основном за счет пассивных средств - собственной внутренней защитой от любых нарушений нормальной эксплуатации даже без подключения систем безопасности и без вмешательства персонала в управление реактором. Внутренняя защищенность связана с наличием значительного отрицательного эффекта реактивности при уменьшении плотности раствора за счет разогрева (температурный эффект) и при образовании в растворе радиолитического газа (пустотный эффект), что ограничивает рост мощности при возмущениях по реактивности и гасит разгон мощности, выводя ее на безопасный уровень. Для реализации этой технологии предлагается создать производственный комплекс, состоящий из двух или более реакторов (в зависимости от требуемой производительности) и системы радиохимического выделения изотопов. Таким образом можно было бы обеспечить наработку требуемого количества молибдена-99 на низкообогащенном уране (НОУ) и попутно получать наиболее востребованные для ядерной медицины изотопы йод-131, ксенон-133, стронций-89.

Кроме представленных наиболее крупных проектов по развитию изотопного бизнеса, требующих больших инвестиций, имеются и другие, более мелкие с финансовой точки зрения, но не менее важные по социальной значимости. Такие проекты, как расширение номенклатуры закрытых источников ионизирующего излучения для лечения пациентов с заболеваниями органов зрения, разработка технологии и создание производства генераторов рубидия-82 для диагностики сердечно-сосудистых заболеваний и другие. Для большинства из них будут создаваться консорциумы из нескольких предприятий, и только после распределения работ возможно выполнение того или иного проекта.

Радионуклидная терапия

Начальник лаборатории радиофармпрепаратов АО «ГНЦ РФ - ФЭИ» Дмитрий Степченков

В мировой практике для паллиативной терапии костных метастазов сейчас активно используются РФП на основе изотопов 153 Sm, 89 Sr, 32 P, 33 P, 186 Re, 188 Re, 177 Lu, 90 Y, 131 I. Применяется также и альфа-излучатель 223 Ra. В России сейчас используются только два препарата: на основе 153 Sm и 89 Sr; при этом эффективность терапии составляет 60-80%. Для стинтиграфии скелета применяются в основном простейшие дифосфонаты, меченные технецием-99m, и дифосфонаты, меченные рением-186 и рением-188. Радионуклидная терапия в ревматологии также связана с применением довольно широкого спектра РФП на основе изотопов 90 Y, 32 P, 169 Er, 165 Dy, 153 Sm, 89 Sr, 186 Re, 188 Re, 177 Lu.

Генератор рения-188

Достоинством рения-188 как радионуклида для ядерной медициныявляется наличие как бета-, так и гамма-составляющей излучения, первая определяет терапевтический эффект, а вторая - визуализацию распределения препарата в организме. Рений-188 перспективен с точки зрения применения его соединений в бета-лучевой терапии злокачественных новообразований, метастазов, ревматоидных артритов и др. заболеваний открытыми радионуклидными источниками. Проникновение в ткани β-частиц с энергией около 1 МэВ составляет 5 мм, и поэтому характер дозового распределения аналогичен распределению нуклида в ткани. Период полураспада рения-188 хорошо согласуется с требованием равняться нескольким жизненным циклам клетки.

Генератор рения-188 относится к современным отечественным высокотехнологичным изделиям медицинской техники, элюаты которых содержат радионуклид рения-188 и являются основой получения РФП,коллоидов, микросфер, пептидов, антител, разрабатываемых для лечения онкологических и неонкологических заболеваний (рис. 1 ).Рений обладает способностью к комплексообразованию, что позволяет синтезировать радиофармпрепараты (РФП) для диагностики и терапии злокачественных новообразований, костных метастазов, ревматоидных артритов и других заболеваний. Специалистами ФГБУ ГНЦ ФМБЦ им. А.И. Бурназяна разработан и прошел доклинические исследования наноколлоид с 188 Reдля терапии воспалительных заболеваний суставов. Проходят клинические исследования следующие «холодные наборы»: 188 Re- «Фосфорен», «Золерен» - для радионуклидной терапии метастатических поражений костной ткани. По сравнению с другими странами Россия наиболее близка к началу производства подобных препаратов.

Рис. 1. Область применения генератора рения-188

Специалистами АО «ГНЦ РФ - ФЭИ» первыми в России создан генератор рения-188 ГРЕН-1 (188 W/ 188 Reгенератор), генератор применяется для получения стерильного апирогенного раствора перрената натрия (Na 188 ReO 4). Качество элюата соответствует требованиям Европейской и Российской фармакопей. Выпуск генераторов осуществляется согласно требованиям системы обеспечения качества - стандартам серии ГОСТ ISO-9001-2011.

В настоящее время в ГНЦ РФ - ФЭИ проводится комплекс работ по реконструкции производственных помещений в соответствии с требованиями ГОСТ Р 52 249-2009 «Правила организации производства и контроля качества лекарственных средств» (Good Manufacturing Practice).

Для повышения конкурентоспособности 188 W/ 188 Reгенератора на международном рынке ведущими специалистами АО «ГНЦ РФ - ФЭИ» проводятся научные исследования в обоснование способов повышения объемной активности радионуклида 188 Reв элюате генератора 188 W/ 188 Re, новой конструкции генератора со сниженным транспортным индексом, по оптимизации материала защиты (рис. 3 ). Работы согласуются с государственной политикой, направленной на модернизацию производства и обеспечение населения России современными высокотехнологичными средствами диагностики, лечения различных заболеваний и снижение стоимости этих услуг.

Рис. 3. Генератор рения-188 новой конструкции

С целью увеличения объемной активности раствора перрената натрия выполнены исследования зависимости кривой элюирования от номинала генератора 188 W/ 188 Re. Установлено, что для генераторов активностью от 100 до 500 мКи по рению-188 объем элюента составляет не более 5 мл; для генераторов активностью от 500 до 1000 мКи - не более 10 мл (рис. 4, 5 ).

Рис. 4. Профили элюирования генераторов рения-188 номиналом 200 и 100 мКи

Результатом проведенных работ являются разработка стационарного генератора рения-188 номиналом до 5,0 Ки и обоснование способа фракционного (порционного) элюирования генератора рения-188, защищенного патентом РФ на изобретение № 2481660. «Способ получения генераторного радионуклида рений-188». 2011. Баранов Н.Г., Степченков Д.В., Нерозин Н.А., Сулим Е.В., Минко Ю.В., Семенова А.А. В таблице 2 представлены сравнительные показатели объемной активности элюатов из генераторов рения-188 ГРЕН-1 на начало эксплуатации и в течение 2,5 месяцев при штатном и фракционном режимах элюирования.

Рис. 5. Профили элюирования двух генераторов рения-188 номиналом 1 Ки

На рис. 6 представлена кривая элюирования стационарного исследовательского генератора рения-188, установленная в течение 4 месяцев эксплуатации генератора номиналом 3,7 Ки.

Рис. 6. Профиль элюирования стационарного генератора рения-188 номиналом 3,7 Ки в течение 4 месяцев

Параметры объемной активности элюатов из генераторов рения-188 ГРЕН-1 на начало эксплуатации и в течение 2,5 месяцев при штатном и фракционном режимах элюирования

Таблица 2

Номинальная активность генераторов рения-188 ГРЕН-1, мКи/мл

Режим элюирования

Объем элюата, мл

Начальная объемная активность,

Объемная активность на 30-е сутки,

Объемная активность на 70-е сутки,

фракционный

фракционный

В соответствии с техническими условиями элюирование генераторов проводится с периодичностью 4,0 суток для достижения 99% накопления радионуклида рения-188, что определяется из уравнения накопления дочернего радионуклида рения-188 в генераторной системе вольфрам-188/рений-188 и получения конечного продукта с максимальной объемной активностью. С целью повышения эффективности извлечения радионуклида рения-188 предложено элюирование генератора с интервалом 24 или 48 часов (рис. 7 ).

Рис. 7. Выход радионуклида рения-188 при элюировании генератора вольфрам-188/рений-188

Так, генератор вольфрам-188/рений-188, имеющий номинальную активность 1 Ки вольфрама-188, обеспечивает 750-800 мКи радионуклида рения-188 при достижении равновесия после 4 суток (выход рения-188 более 75%). При последовательном ежедневном элюировании накопление рения-188 достигает 63% (накопление 24 часа, рисунок) и составляет 500 мКи.

«Сухое хранение» колонки генератора 188 W/ 188 Re минимизирует радиолиз.

Радионуклиды l86 Re (7’i/2 = 90,6 ч) и l88 Re (Тц 2 = 6,9 ч), являясь Р -излучателями, так же как l53 Sm и ll7m Sn, имеют удобные для регистрации линии у-спектра с энергиями 137 и 155 кэВ, соответственно. Как следует из табл. 5.2 , получение IX6 Re возможно на среднепоточных реакторах путем облучения нейтронами порошковых или металлических мишеней из обогащенного рения-185. Все это делает его достаточно доступным для медицины. Вместе с тем для его транспортирования на большие расстояния требуется наработка высоких удельных активностей радионуклида, что создает сложности при последующем получении требуемых дозированных количеств препарата в клинических условиях. После облучения порошковые мишени переводят в рениевую кислоту путем их растворения в азотной кислоте или перекиси водорода. Для вскрытия металлических мишеней применяют 30 % раствор перекиси. К числу известных препаратов на основе IS6 Re относится его комплексное соединение с натриевой солью 1-гидроксоэтилидин ди- фосфоновой кислоты (HEDP).

В отличие от l86 Re радионуклид рений-188 является генераторным продуктом (3 -распада 18 w и образуется в результате ядерных превращений:

Для наработки материнского радионуклида W обычно применяют металлические порошковые мишени, а также мишени из окиси вольфрама, обогащенные по изотопу l86 W. В дальнейшем растворение металлических мишеней проводят в смеси (0,1 М NaOH и 30 % Н1О2), а оксида вольфрама - в растворе (0,1 М NaOH и 5 % NaOCl).

С учетом того, что W образуется в результате двух последовательных реакций (и, у), его производство целесообразно только на реакторах, имеющих поток нейтронов не менее 5 ? 10 м н/см 2 с. Расчет ве- личины удельной активности W, сделанный для такой цепочки превращений , показывает, что при потоке 510 14 н/см 2, с и времени облучения 100 дней она составит около 1,5 Ки/г. На реакторах с потоком 2 ? 10 15 н/см 2 с достигается выход радионуклида ~ 10 Ки/г за 43 часа облучения.

Для отделения l88 Re от материнского изотопа и получения его без

носителя используются хроматографические W/" Re-генераторы, где в качестве основного сорбента применяется оксид алюминия. На рис. 5.1 приведена схема генератора, разработанного в Ок-Риджской национальной лаборатории. Представленный генератор, помимо основной колонки с оксидом алюминия, имеет концентрирующие анионообменные колонки с катионитом и анионитом.

Генератор работает следующим образом: по коммуникации 1 шприцом через хроматоргафическую колонку, фильтр 2, катионообменную колонку с серебром 5, анионообменную колонку 3, пропускают 20 мл 0,155 М раствора NaCl, фильтруют и собирают в сборнике 9, снабженном воздушным фильтром 8. Хроматографическая и ионообменные колонки, а также сборник l88 Re расположены в защитных контейнерах. Трехходовые вентили 6 и 7 предназначены для проведения промывки и регенерации ионообменной колонки. Выход рения-188 с радиохимической чистотой более 99,0 % составляет более 90 %. Содержание примеси материнского радионуклида l88 W в элюате не превышает 1 10^%

от активности Re.

Рис. 5.1. Схема,HH W/ m Re генератора:

1 - подача элюента; 2 - фильтр; 3 - анионообменная колонка; 4 - ионообменная колонка; 5 - катионообменная колонка с серебром; 6 - трехходовой вентиль для отходов; 7 - трехходовой вентиль для промывочной воды и элюата; 8 - воздушный фильтр; 9 - общий сборник

Более простой и технологичный способ получения генератора рения-188 с высокой радионуклидной чистотой и объемной активностью целевого радионуклида был разработан в Институте ядерной физики АН Республики Узбекистан. Здесь для обеспечения высокой радионуклидной чистоты целевого продукта очистку от посторонних радионуклидных примесей проводят на предварительном этапе перед зарядкой генератора. С этой целью облученную мишень из металлического вольфрама, обогащенного по изотопу IS6 W до 99,79%, растворяют в перекиси водорода. Псрскисный раствор вольфрама подщелачивают до pH 10... 12 и проводят очистку от радионуклидных примесей путем пропускания щелочного раствора через колонку с оксидом алюминия, обработанного непосредственно перед употреблением 0,01... 0,10 М раствором щелочи. Полученный щелочной раствор вольфрамата собирают, подкисляют соляной кислотой до pH 3...4, дозируют и отправляют на зарядку генераторов. Адсорбцию поливольфрамат-ионов проводят на колонках высотой 7... 10 см и диаметром 0,8... 1,2 см, вмещающих до 5 г оксида АЬОз, предварительно обработанного 0,1 М раствором HCI при нагревании в течение 5... 10 мин. В нижней части колонки, кроме того, располагают фильтрующий слой из оксида алюминия в Н-форме.

Через 18 ч генераторы промывают 30 мл 0,9% раствором NaCl с pH 3...4. Элюирование рения-188 осуществляют тем же раствором, но объемом 10 мл. При этом обеспечивается радиохимический выход более 75,5 % и РХЧ препарата 99,9 %, pH 5,51. Содержание неактивных примесей Al, Fe, Си не более 5 мкг/мл, радионуклидных примесей li4 Cs, i37 Cs, 60 Со, 65 Zn, " 0m Ag, |40 Ва - менее К) 5 %, l88 W - менее 10 3 %.

Подобный генератор (ГРЕН-1) с активностью элюата рения-188 до 1 Ки был в 2006 году разработан в ГНЦ РФ ФЭИ. Медицинский соисполнитель - МРНЦ РАМН (г. Обнинск). Поставщиком сырья для производства этих генераторов является ОАО НИИАР (г. Димитрово- град). К настоящему времени на реакторе СМ-3 отработан режим облучения l86 W, при котором достигается удельная активность l88 W до 8 Ки/г.

Главное преимущество W/ Re-генераторов состоит в том, что они имеют длительный срок годности и предоставляют возможность получать элюат- натрия перренат, l88 Re с требуемой объемной активностью непосредственно в клиниках. Несмотря на более высокую энергию Р-частиц по сравнению с l86 Re, относительно короткий период полураспада l88 Re обеспечивает возможность снижения болевого синдрома при отсутствии поражения костного мозга. Такой эффект отмечается, на-

пример, при использовании препарата Re-HEDP взамен аналогичного 186 188 РФП на основе Re. Кроме того, при генераторном получении Re

появляется возможность для использования коммерчески доступных «реагентов», разработанных для диагностических РФП технеция-99т, например комплекса димеркаитоянгарной кислоты Re(V)-DMSA (отечественный аналог «Карбомек»). За рубежом и в России проводятся исследования по получению меченных рением микросфер альбумина.

Использование: в ядерной медицине для терапевтических целей, для научных исследований и технологического контроля. Сущность изобретения: разработан способ получения генератора рения-188 с высокой радионуклидной чистотой и объемной активностью целевого радионуклида. Мишень из оксида вольфрама облучают нейтронами и растворяют в щелочи. Нерастворенный осадок растворяют в перекиси водорода. Полученный раствор подщелачивают до pH 12-14. Проводят очистку щелочного раствора пропусканием через колонку с оксидом алюминия в OH - -форме и подкисляют раствором соляной кислоты. Затем вольфрам-188 переводят в матрицу, сорбцией на оксиде алюминия в H + -форме в динамическом режиме, либо в статистическом с переносом матрицы в колонку с фильтрующим слоем из оксида алюминия в H + -форме. Элюирование рения-188 проводят растворами натриевых солей. 3 табл.

Изобретение относится к области преобразования химических элементов и получению радиоактивных источников, а именно к способам выделения радионуклида рения-188 из облученной мишени вольфрама радиохимическим методом, и может быть использовано в ядерной медицине для терапевтических целей, для научных исследований и технологического контроля. Известны способы получения генератора рения-188, заключающиеся в том, что облучают мишень из оксида вольфрама или вольфрамовой кислоты нейтронами, растворяют мишень, переводят в сорбируемую форму и затем в нерастворимую матрицу путем сорбции на оксиде алюминия и элюируют рений-188 растворами минеральных кислот и их солей С помощью этих способов невозможно получить генератор рения-188 с высокой объемной активностью, радионуклидной и химической чистотой целевого радионуклида. Представлены невыгодные условия сорбции вольфрама и элюирования рения. Недостаточны либо отсутствуют данные о характеристиках элюата рения-188. Не разработаны режимы изготовления и эксплуатации генераторной колонки, позволяющие создать технологию получения генератора нения-188 и использовать генератор для медицинских целей. Наиболее близким по технической сущности является способ изготовления генератора рения-188, заключающийся в том, что облучают мишень из вольфрама (оксида вольфрама) потоком нейтронов 310 14 н/см 2 с, растворяют оксид вольфрама в 2-10 М щелочи, нагретой до 50-90 o C, перевод в матрицу осуществляют взаимодействием щелочного раствора вольфрамита с кислым раствором, содержащим цирконил-ион, для образования осадка вольфрамита циркония, содержащего W-188, дополнительной обработкой этого осадка - доведением pH от 2,8 до 6, преимущественно 4,3, последовательной промывкой водой или физраствором, центрифугированием, декантацией водой, промывкой полярным органическим растворителем, смешивающимся с водой, затем органическим растворителем, смешивающимся с полярным органическим растворителем с низкой температурой кипения, сушкой осадка, причем однородность осадка достигается механической (шпателем) или ультразвуковой разбивкой стекловидного геля вольфрамита циркония, либо добавкой инертного носителя (оксида алюминия, кварца). Матрицу помещают в емкость для элюирования, а элюирование проводят из колонки растворами натриевых солей. Для очистки элюата рения-188 от примеси вольфрама-188 используется оксид алюминия или циркония в виде второй колонки либо слоя под матрицей, содержащей цирконилвольфрамат, через которую проходит элюент Известный способ является трудоемким. Он включает проведение большого числа операций, применение различных реактивов, органических растворителей, посуды, приборов (например, центрифуги), что осложняет процесс изготовления генератора рения-188 в серийном варианте в условиях высокой радиационной нагрузки. Невысок выход целевого продукта 55-65% Отсутствуют данные о радионуклидной чистоте рения-188 за исключением примеси W-188, необходимые для использования генератора рения-188 в терапевтических целях. Цель изобретения упрощение технологического процесса, позволяющего наладить промышленный выпуск генераторов рения-188 с обеспечением высокой объемной активности и радионуклидной чистоты целевого продукта. Поставленная задача достигается тем, что в способе получения генератора рения-188, включающем облучение мишеней из оксида вольфрама нейтронами, растворение мишени в щелочи, перевод в матрицу, содержащую W-188, помещение матрицы в емкость для элюирования и элюирование рения-188, нерастворенный в щелочи осадок оксидов низковалентных состояний вольфрама растворяют в перекиси водорода, подщелачивают до pH 12-14, объединенный щелочной раствор вольфрама подвергают очистке от радионуклидных примесей пропусканием через колонку с оксидом алюминия в OH - форме, подкисляют раствором соляной кислоты и переводят в матрицу, содержащую W-188, сорбцией на оксиде алюминия в H + -форме. Сорбцию проводят в динамическом режиме на колонке либо в статическом режиме с переносом матрицы в емкость для элюирования с фильтрующим слоем из оксида алюминия в H + -форме. Одним из основных условий получения генератора рения-188 высокой объемной активности и радионуклидной чистоты является получение радиоактивного сырья -материнского радионуклида вольфрама-188 оптимальной удельной и объемной активности и радионуклидной чистоты. Высокая удельная активность достигается использованием высоких потоков нейтронов для облучения мишеней, увеличением времени облучения, использованием мишеней из вольфрама, обогащенного по изотопу W-186. Однако, при этом наблюдается частичное восстановление вольфрама и образование оксидов низковалентных состояний вольфрама в виде нерастворимого в щелочи осадка, количество которого увеличивается при облучении в высоких потоках нейтронов и составляет 5-8% от общего количества W-188 при облучении в потоке (1-2)10 15 н/см 2 с в течение 30-40 эффективных суток и примерно 1% при облучении в потоке 10 14 н/см 2 с в течение 100 эффективных суток. Ввиду высокой стоимости радиоактивного сырья имеет смысл использовать W-188 из осадка в технологическом процессе изготовления генератора. Обработка нерастворенного в щелочи осадка раствором перекиси водорода после декантации или фильтрации щелочного раствора вольфрама при комнатной температуре позволили перевести его в раствор, а обработка щелочью до pH 12-14 позволила разрушить избыток перекиси водорода и объединить с основным щелочным раствором для участия в дальнейшем технологическом процессе. Очистка радиоактивных растворов вольфрама позволяет снизить возможность попадания в элюат рения-188 долгоживущих радионуклидных примесей, нарабатываемых в процессе длительного облучения мишенного материала из различных соединений вольфрама, содержащих малые и ультрамалые химические примеси (по паспорту <0,01%).

186 WO 3 с обогащением 99,79% в облученной мишени обнаруживается 110m Ag (0,2%), 137 Cs (0,17%), 65 Zn (0,06%), 95 Zr- 95 Nb (2,2%), 103 Ru- 103 Rh (1%), 106 Ru- 106 Rh (0,13%), 140 Ba- 140 La. В случае WO 3 "для оптического стекловарения" естественного состава большое количество 134 Cs. В случае наиболее чистого мишенного материала 186 WO 3 с обогащением 96% содержание радионуклидных примесей незначительно, однако вклад их в общую активность увеличивается по мере хранения радиоактивного сырья вследствие распада W-188, тем самым снижая срок годности радиоактивного сырья и генератора, что особенно существенно для генераторов медицинского назначения. При облучении в менее интенсивных потоках нейтронов-ное содержание радионуклидных примесей выше, чем при облучении в потоках 10 15 н/см 2 с. Часть радионуклидных примесей при элюировании попадает в раствор целевого радионуклида Re-188. основными радионуклидными примесями, обнаруженными в элюатах генераторов 188 W- 188 Re, приготовленных из различного радиоактивного сырья, являются 134,137 Cs, 110m Ag, 60 Co, 65 Zn, а также 140 Ba в свежезаряженных генераторах (Т 1/2 12,8 дн). -спектры элюатов рения-188 генераторов активностью 100 мКи приготовлены из неочищенного вольфрама-188. Пример радионуклидных примесей в нескольких элюатах, отобранных в течение месяца после изготовления генераторов 2 мес. после окончания облучения (1) и через 5-6 мес. после изготовления (2) -приведен в табл.1. Проведение очистки от радионуклидных примесей на оксиде алюминия в OH - -форме позволяет сорбировать основную их часть, практически не извлекая вольфрам-188, оптимальные условия разделения наблюдаются в случае использования в качестве сорбента Al 2 O 3 , обработанного непосредственно перед использованием 0,1-1 н NaOH, в качестве водной среды - растворы вольфрама pH 12-14 (табл.2). Обработка оксида алюминия 0,1-1 н NaOH и заправка очистительной колонки непосредственно перед проведением очистки позволяет максимально активировать сорбент и снизить количество растворенного алюминия в очищенном щелочном раствора вольфрама, что наблюдается при использовании необработанного сорбента. Проведение очистки W от радионуклидных примесей в динамических условиях обеспечивает количественное извлечение Cs, Co, Ag, Zn, Ba и распределение их в верхней части хроматографической колонки (табл.3), так как коэффициенты распределения на порядок выше, чем в статических условиях. Подкисление очищенного щелочного раствора вольфрама 1-2 н HCl при переводе в сорбируемую форму изополивольфраматы обеспечивает оптимальную концентрацию вольфрама (505) мг/мл и соответственно оптимальную объемную активность. Использование более концентрированных растворов HCI может привести к выпадению W в осадок, более разбавленных к снижению концентрации и объемной активности W-188. Доведение до pH 12-14 щелочного раствора, полученного при растворении нерастворенного в 2 н NaOH осадка оксидов низковалентных состояний вольфрама в перекиси водорода с последующим подщелачиванием, обеспечивает оптимальную очистку от Cs, Co, Ag, Zn, Ba и минимальную потерю вольфрама на очистительной колонке. Подкисление щелочных растворов вольфрама соляной кислотой и обработка сорбента соляной кислотой обеспечивают оптимальную сорбцию вольфрама в виде изополивольфраматов на оксиде алюминия в H + -форме. Наилучшая сорбция достигается при значении pH раствора вольфрама, равном 3-4, и при обработке оксида алюминия 0,1 н HCl. Сорбция вольфрама в динамических условиях обеспечивает серийный выпуск генераторов в условиях работы с высокой радиоактивностью и дистанционного управления технологическим процессом. Сорбция вольфрама в статических условиях с переносом сорбата в колонку с фильтрующим слоем в случае низкой удельной или объемной активности, т.е. большого весового или объемного количества вольфрама, позволяет получить генератор максимальной активности для данного радиоактивного сырья и при этом снизить вероятность попадания W-188 в элюат целевого радионуклида рения-188, продлить срок годности несвоевременно перерабатываемого радиоактивного сырья или изготовленного генератора. Пример 1. 1 г WO 3 (H 2 WO 4), обогащенного по изотопу W-186 (96-99,8%) или естественного состава, облучали в потоке (1-2)10 15 н/см 2 с в течение 28 сут. Образец после охлаждения в течение 20 сут вскрывали, переносили в колбу 1 на 50 мл (1), содержащую 8 (7,2) мл 2 н NaOH, нагревали на плитке при 200-300 o C в течение 10-20 мин, остужали. Оксид алюминия (2 г) обрабатывали в стакане на 50 мл 0,1-1 н NaOH при нагревании на плитке в течение 5-10 мин, переносили в колонку размером h 10 см, =0,8 см. Щелочной раствор, осторожно отделяя от нерастворенного осадка, пропускали через колонку с Al 2 O 3 в OH - -форме, промывали осадок в колбе и колонку 2-4 мл 1 н NaOH, собирали элюат в колбе на 50 мл. Нерастворимый в щелочи осадок в колбе 1 растворяли в 2 мл 15-20% H 2 O 2 , подщелачивали 2 мл 2 н NaOH до pH 12-14, пропускали щелочной раствор через ту же колонку с Al 2 O 3 в OH - -форме. Объединенный щелочной раствор подкисляли 1 н HCl (12 мл) до pH 3-5, переносили в цилиндр, измеряли объем, отбирали аликвоту для измерения объемной активности, радионуклидных примесей, рассчитывали удельную активность и концентрацию вольфрама. С помощью дозатора готовили флаконы с радиоактивным раствором, обеспечивающим зарядку генератора заданной активности из расчета A 188 w: A 188 Re = 1,3. Готовили серию колонок высотой 7-10 см, 0,8-1,2 см с содержанием Al 2 O 3 1-5 г, предварительно обработанным 0,1 н HCl при нагревании 5-10 мин. Колонки и флаконы с радиоактивным раствором стерилизовали в автоклаве в течение 15 мин при 120 o C и давлении 1,1 атм. Колонки помещали в защитный контейнер с внутренними коммуникациями (типа ГТ-2). зарядку генераторной колонки проводили с помощью вакуумированных флаконов или системы разрежения со скоростью 8-20 мл/мин. Промывали генератора 0,9% NaCl pH 3-4 (30 мл) через 18 ч после зарядки и элюировали Re-188 в виде Na 188 ReO 4 тем же раствором с помощью вакуумированных флаконов объемами по 10 мл. Отбирали и исследовали элюаты Re-188 периодически в течение срока годности генератора полугода, года. Определяли объемную активность, радиохимический выход, радиохимическую чистоту (РХЧ), pH, состав химических и радионуклидных примесей и другие характеристики элюата. Объемная активность составляла 0,1-10 мКи/мл, радиохимический выход 755% в объеме 10 мл, РХЧ 99,9% pH 5,51, содержание неактивных примесей Al, Fe, Cu менее 5 мкг/мл, радионуклидных примесей 134 Cs, 137 Cs, 60 Co, 65 Zn, 110m Ag, 140 Ba менее 10 -6 188 W менее 10 -3 Характеристики элюата удовлетворяют медико-техническим требованиям. Пример 2. Поясняет второй вариант зарядки генератора с наружными коммуникациями. Облучение, растворение образцов, очистку от радионуклидных примесей, перевод в сорбируемую форму проводили как в примере 1. Готовили колонки размером h 10 см, o 1,2 см с содержанием Al 2 O 3 в H + -форме 3-6 г, завальцовывали. Рассчитанный объем радиоактивного раствора 2-10 мл вносили в колонки с помощью дозатора с иглой либо флаконов и системы разрежения. Колонки помещали в защитный контейнер с наружными коммуникациями типа КСУ-2 НРЖ, промывали через 6-18 ч 30-60 мл 0,9% NaCl pH 3-4 и затем элюировали Re-188 растворами натриевых солей периодически в течение года. Характеристики элюата существенно не отличались от характеристик элюатов генераторов, приведенных в примере 1, активностью 1-100 мКи. Пример 3. Поясняет вариант зарядки генераторов с наружными коммуникациями в статическом режиме в случае растворов вольфрама низкой объемной активности. Облучение мишеней из вольфрама проводили в потоках 10 14 н/см 2 с в течение 100-120 сут эффективного времени. Переработку и очистку щелочных растворов от радионуклидных примесей, перевод в сорбируемую форму проводили как в примерах 1, 2. Сорбцию проводили из больших объемов растворов вольфрама низкой удельной и объемной активности (10 мл) в статическом режиме в колбах на 50 мл, содержащих 2-5 г Al 2 O 3 в H + -форме в течение 2 ч при перемешивании. Готовили колонки с 1-2 г Al 2 O 3 в H + -форме в качестве фильтрующего слоя, сорбат из колбы переносили на воронку с бумажным фильтром, промывали 0,9% NaCl pH 3-4 (50-60 мл), переносили в колонку протыканием фильтра стеклянной палочкой, обмывая 5 мл 0,9% NaCl pH 3-4. Колонку завальцовывали, стерилизовали в автоклаве в течение 15 мин при 120 o C и давлении 1,1 атм, помещали в защитный контейнер типа КСУ-2 НРЖ. Содержание W в генераторах до 500 мг. Характеристики элюата за исключением объемной активности Re-188 аналогичны характеристикам элюатов генераторов высокой удельной активности. Содержание радионуклидных примесей не превышало 10 -6 Таким образом, сочетание предлагаемых существенных отличий: растворение нерастворенного в щелочи осадка вольфрама в перекиси водорода и подщелачивание его до pH 12-14, проведение очистки щелочного раствора от радионуклидных примесей пропусканием через колонку со специально обработанным оксидом алюминия, перевод в сорбируемую форму и в матрицу сорбцией на оксиде алюминия в H + -форме в динамическом и статическом режимах с известными признаками является необходимым и достаточным для решения поставленной задачи: упрощения технологического процесса, позволяющего наладить промышленный выпуск генераторов рения-188 с обеспечением высокой объемной активности и радионуклидной чистоты целевого продукта.

 

Возможно, будет полезно почитать: