Фармакокинетика всасывание лекарственных веществ. Метаболизм лекарственных веществ

Фармакокинетика –изучает «судьбу» ЛСтв в организме человека от момента их введения до обезвреживания и выведения.

От «kinesis» — движение. Движение лекарства в организме человека. Или, «что организм делает с лекарством».

Фармакодинамика , наоборот, изучает «что лекарство делает с организмом».

Лекарственное вещество, принятое перорально проходит в организме три фазы: фармацевтическую, фармакокинетическую и фармакодинамическую . Во время первой фазы лекарство подвергается растворению, чтобы

оно могло пройти через биологические мембраны. Если лекарство назначается парентерально

(подкожно, внутримышечно или внутривенно), то фармацевтическая фаза отсутствует.

Вторая фаза, фармакокинетическая , включает в себя четыре основных процесса: всасывание, распределение, метаболизм и выведение.

Результатом фармакодинамической фазы является биологическое или физиологическое действие лекарственного средства.

Характеристика путей введения ЛС.

  1. К энтеральным путям введения относят пероральный, сублингвальный, буккальный, ректальный, в 12-перстную кишку через зонд.
  2. Парентеральные пути введения:

А. Иньекционные:п/к, в/м, в/в, внутриартериальный, субарахноидальный, интракардиальный

Б. Неиньекционные: накожный, ингаляционный, на слизистые оболочки (интраназальный, коньюнктивальный)

Путь введения

Достоинства

Недостатки

ЭНТЕРАЛЬНЫЕ ПУТИ ВВЕДЕНИЯ
Пероральный — наиболее удобно, экономично — — безопасно, б/б

— не требуется медработник

— всасывание нестабильное и неполное: лекарство может быть плохо растворимо, медленно абсорбироваться, разрушаться ферментами ЖКТ; нек-е вообще не всасываются

— влияет прием пищи*(* f. e., пропранолол, метопролол, дифенин, в присутствии пищи всасываются быстрее, а дигоксин, и – медленнее )

— Медленно развивается эффект (не при НП)

— Раздражает сл/о ЖКТ

— нельзя применять при рвоте

— нельзя использовать при бессознательном состоянии

— лекарство обязательно проходит через систему v. porta, —> метаболизируется, это снижает активную концентрацию

Сублингвальный ближе к парентеральным путям по своим хар-кам — быстрое всасывание через слизистую оболочку полости рта

— концентрация лекарства выше, чем при приеме per os, т. к.

1) не метаболизируется в печени,

2) не разрушается секретами ЖКТ,

3) не связывается пищей

— нельзя назначать лекарства неприятного вкуса

— нельзя назначать лекарства, раздражающие слизистую оболочку

Аппликация на слизистую оболочку рта лекарственную форму, f. e., полимерную пленку — носитель с нитроглицерином наклеи-т на десны; — используют при приеме пролонгированных форм, а также, возможно, как замена парентерального введения лекарств -//- То же
Ректальный

в виде суппозиториев, клизм (50 мл), если оказывают раздражающее действие — со слизями

— можно применять у больных с рвотой

— можно применять при бессознательном состоянии

— можно применять при застойных состояниях ЖКТ, печени

— лекарство на 50% идет в обход печени (не метаболизируется в печени)

— негативная эмоциональная реакция, менее естественен

— всасывание нерегулярное и неполное (трудно дозировать)

— может быть раздражающее действие

— белки, жиры, полисахариды в толстом кишечнике не всасываются

ПАРЕНТЕРАЛЬНЫЕ ПУТИ ВВЕДЕНИЯ

Внутривенный

-быстрое развитие эффекта

Можно использовать при

бессозн. состоянии пациента

— 100% биодоступность

Сила действия ЛС в 2-3 раза выше, чем пер ос

Можно быстро изменять дозу

— не раздражает ЖКТ

— болезненность

— необходимо соблюдать асептику

— нужна помощь медперсонала

— предельная точность дозировки из-за возможности передозировки

— могут развиться тромбозы, тромбоэмболии, флебиты

— Вич, гепатит В

— Более опасны в плане развития остр. аллергических реакций

Внутримышечный кровоток увеличивается при физических нагрузках, в мышцах верхних конечностей

он сильнее

— нет раздражения ЖКТ

— создает депо препаратов (f.e., пенициллинов, нейролептиков), —> — — пролонгирование эффекта

надежность

— болезненность

— невозможность использования самому (стерильность, мед персонал)

Подкожный

абсорбция быстрая

из водных ратворов,

медленная из нек.

Специальных

препаратов,

в основном на масле;

кроме того, п/к

препараты вводят в

виде нерастворимых

суспензий или путем

имплантации твердых

таблеток

— надежность

— возможность использования самому

Нельзя вводить большие объемы лекарств

Нельзя вводить раздражающие вещества

При периферической циркуляторной недостаточности абсорбция медленная и скудная

Могут вызывать липоатрофию —> неустойчивая абсорбция (f.E., )

ингаляционный

1 газовые — средства для наркоза

2 аэрозольные — бета-2-миметики (частицы вещества, находящиеся в газе во взвешенном состоянии, жидкие или твердые)

3 порошки для ингаляции — натрия кромогликат газы быстро проникают в организм и выводятся

— можно использовать самому в большинстве случаев

— обеспечивают высокую концентрацию в бронхах

— минимальный системный эффект, хотя могут быть использованы для системного действия (эрготамин)

— нужна специальная аппаратура или портативные приборы

— Детям ингаляции делать сложно, т.к. они не могут координировать вдох и ингаляцию

— нельзя использовать при бронхообструкции, т. к. накапливается слизь

— иногда возможно поступление в ЖКТ и раздражение слизистой

местные аппликации

на кожу, глаз, анальный канал, влагалище

— высокая местная концентрация без значительного системного эффекта

— простота в использовании

— при повреждении тканей всасывание нарушается и возникает системное действие

Проникновение ЛС через биологические барьеры .

Барьеры: — Сл/о ЖКТ, ротовой полости и носоглотки, кожные покровы,

— Гематоэнцефалический барьер, плацентарный, эпителий молочных желез, почечный

Любой барьер состоит из мембран входящих в него клеток. Принципиальное строение всех барьеров одинаковое.

Проникновение через мембрану зависит от водо – и жирорастворимости и ионизации ЛС.

  • Наиболее легко проникают через билипидный слой (а значит во все клетки и ч/з все барьеры) жирорастворимые вещества (этиловый спирт, ацетон).
  • Некрупные незаряженные водорастворимые молекулы (сахара) проникают в клетки ч/з поры.
  • Сильнополярные жиронерастворимые в/ва не проникают ч/з мембрану. Они не всасываются в ЖКТ, не проходят через гематоэнцефаличекский барьер, ч/з плаценту. Они могут проходить только через стенку сосудов, т.к. в капиллярах значительно больше диаметр пор.
  • Жизненно необходимые для клеток вещества попадают в клетку путем облегченного транспорта с помощью белков –переносчиков.
  • Пиноцитоз (образование вакуолей).

Виды транспорта веществ через мембрану

А. Пассивный – без затрат энергии (простая и облегченная диффузия)

Б. Активный – с затратами энергии АТФ (транспорт с помощью белков- переносчиков, пиноцитоз)

Фармакокинетика
Фармакокинетикой называются процессы перемещения лекарственного средства по организму. Она включает в себя всасывание (или абсорбцию), распределение, метаболизм (или биотрансформацию) и выведение (или элиминацию).
Зная особенности фармакокинетики лекарственного средства, можно обеспечить его эффективное и безопасное применение.

Всасывание, или абсорбция.
Абсорбцией называется перемещение молекул лекарства из ЖКТ в жидкости организма. Подавляющее большинство лекарств всасывается в тонком кишечнике, слизистая которого снабжена большим количеством микроворсинок, значительно увеличивающих всасывающую поверхность. Если количество микроворсинок уменьшается в результате каких-либо заболеваний (кишечные инфекции), воздействия химических веществ или удаления части тонкого кишечника, всасывание лекарства уменьшается. Препараты белкового происхождения (например, или гормон роста) разрушаются в тонком кишечнике под воздействием пищеварительных ферментов, и поэтому назначать их перорально бесполезно.
Абсорбция осуществляется посредством разных процессов: пассивной диффузии, активной абсорбции и пиноцитоза. Мембрана ЖКТ состоит главным образом из липидов (жиров) и белков, и поэтому вещества, обладающие хорошей жирорастворимостью, всасываются легко. Водорастворимые вещества нуждаются в переносчике.

На абсорбцию лекарственных веществ оказывают влияние кровоток в ЖКТ, боли, стресс, голодание, прием пищи и рН. Ухудшение кровотока в стенке ЖКТ может быть результатом шока, приема сосудосуживающих средств или болезней кишечника. Боли и стресс, а также твердая, горячая или жирная пища замедляют опорожнение желудка, и лекарство остается в нем дольше. Физические нагрузки тоже снижают кровоток в стенке ЖКТ, за счет перераспределения крови в скелетные мышцы.

После попадания в ЖКТ лекарства не сразу поступают в системный кровоток, а сначала проникают в воротную вену, несущую кровь от кишечника в печень. В печени одни лекарства разрушаются с образованием неактивных форм, что значительно уменьшает количество вещества, попавшего в системный кровоток; другие образуют метаболиты, иногда даже более эффективные, чем исходное вещество. Процессы, происходящие в печени, когда лекарство впервые проходит через нее, называются эффектом первого прохождения

2. пути введения (пероральный, ректальный, местный, парентеральный);

3. лекарственные формы (порошки, таблетки, капсулы, трансдермальные пластыри и т.п.);

4. состояние слизистой ЖКТ и его моторики(при поносе все «пролетает мимо»);

5. пища и другие лекарственные средства (с углем акт.);

изменения метаболических возможностей печени в результате нарушений ее функций или печеночного

кровотока. Снижение функции печени в результате ее заболевания или уменьшение печеночного кровотока

приведет к увеличению биодоступности препарата (но только в том случае, если он метаболизируется в печени).
Распределение – это процесс, посредством которого лекарственное вещество попадает в жидкости и ткани организма. На распределение лекарства влияют скорость кровотока, аффинность (способность к связыванию) к тканям, и степень связывания его с белком.

Многие лекарственные вещества по мере их проникновения в плазму связываются в различной степени (выражаемой в процентах) с ее белками, главным образом – с альбумином.

Та часть дозы препарата, которая связалась с белками плазмы, считается неактивной, поскольку она недоступна для рецепторов тканей. Та часть дозы, которая осталась несвязанной, называется свободной фракцией. Именно свободная фракция является активной и может оказывать фармакологический эффект. По мере уменьшения в плазме свободной фракции лекарства все большее количество его молекул высвобождается из связи с белком, тем самым поддерживая в плазме баланс между свободной и связанной фракциями (так называемое динамическое равновесие).
Когда два интенсивно связывающихся с белком препарата назначаются одновременно, они конкурируют за связывающие участки молекул белка, и поэтому свободные фракции каждого из них в кровотоке увеличиваются. В такой ситуации возможны накопление (кумуляция) препаратов и появление их токсических эффектов.

Кроме того, уровень свободного препарата в плазме возрастает при снижении содержания белка в ней (за счет уменьшения количества связывающих участков молекул белка), это также может вести к передозировке. Снижение уровня белка может наблюдаться при голодании, массивных ожогах, опухолях, заболеваниях печени,у пожилых людей и т.д.

В связи с этим при расчете дозы лекарства учитывается степень его связывания с белками плазмы.

Метаболизм, или биотрансформация
Основной орган, в котором происходит метаболизм, – это печень.

Выделяют 2 вида биотрансформации :

  1. Метаболическая происходит за счет окисления, восстановления или гидролиза
  2. Коньюгационная – происходит путем присоединения к ЛВ нек-х соединений (глюкуроновой к-ты) или химических групп (метилирование, ацетилирование).

Большинство лекарств инактивируется ферментами печени и затем превращается под влиянием других ферментов в растворимые вещества, пригодные для выведения почками. Подавляющее большинство препаратов жирорастворимы и в печени превращается в водорастворимые вещества.

Существует, однако, целый ряд препаратов, которые в печени, наоборот, превращаются в активные метаболиты, вызывающие усиление фармакологического эффекта.

Период полувыведения лекарства, обозначаемый как Т 1/2 , – это время, в течение которого концентрация этого лекарства в плазме снижается наполовину. На величину периода полувыведения оказывают влияние как метаболизм, так и выведение. Например, при нарушениях функции печени или почек период полувыведения удлиняется. Длительный прием лекарств в таких ситуациях ведет к их накоплению. Коротким считается период полувыведения, составляющий 4–8 ч, длительным – 24 ч и более. Если у лекарства длительный период полувыведения (как, например, у дигоксина – 36 ч), то до полного выведения лекарства после его однократного приема может потребоваться много дней.
Выведение, или элиминация
Основной путь элиминации лекарств – с мочой. Другие возможные пути выведения – с желчью, калом, слюной, потом, грудным молоком и через легкие.

В почках выведение ЛС может идти либо путем пассивной фильтрации, либо активной секреции.

Водорастворимые и не связанные с белком лекарства фильтруются почками. Связанные с белком препараты не могут вывестись с мочой. Если препарат высвобождается из связи с белком, то он тут же может быть выведен.

На экскрецию лекарств с мочой влияет ее рН. рН мочи варьирует от 4,5 до 8,0. Кислая реакция мочи способствует выведению слабых оснований, а щелочная – слабых кислот. Так, апирин, будучи слабой кислотой, быстрее экскретируется при щелочной реакции мочи. При передозировке аспирина можно назначить бикарбонат натрия (соду), которая сдвинет рН мочи в щелочную сторону и ускорит выведение этого препарата. Употребление больших количеств кислого клюквенного сока снижает рН мочи, и, тем самым, замедляет выведение аспирина.
При заболеваниях почек, сопровождающихся снижением скорости клубочковой фильтрации (СКФ) или канальцевой секреции, выведение лекарств замедляется. В результате, опять же, возможно накопление препарата в организме и появление серьезных побочных эффектов. На экскрецию лекарств влияют также изменения кровотока в почках.
Наиболее точный тест для оценки почечной функции – клиренс креатинина (CLсr).

Коэффициент элиминации – процент однократной дозы вещества, элиминированной в течении суток.

По К.Э. судят о продолжительности действия препарата. Чем выше коэф.э, тем короче продолжительность действия.

Быстрее всего из организма выводятся водорастворимые вещества, не связанные с белками крови.

Креатинин – метаболический продукт мышечной деятельности, экскретируемый почками. Его клиренс зависит от возраста и пола. Меньшие значения CLсr следует ожидать у пожилых лиц и женщин, учитывая их меньшую мышечную массу. Снижение СКФ ведет к увеличению уровня креатинина в сыворотке и уменьшению клиренса креатинина с мочой.
При нарушениях функции почек в результате их болезней дозу вводимого лекарства целесообразно уменьшать. Для подбора оптимальной дозы необходимо оценить клиренс креатинина. Если он снижен, то доза препарата тоже должна быть снижена. Длительный прием лекарств согласно их обычному режиму дозирования может привести к .
Через легкие элиминируются летучие вещества и препараты, распадающиеся до СО2 и Н2О.

Фармакокинетика лекарственных средств.

Фармакокинетика – это раздел фармакологии, изучающий судьбу лекарственных средств в организме, то есть всасывание, распределение по органам и тканям, метаболизм и выведение. То есть, путь лекарственного вещества в организме от момента введения до выведения из организма.

Существуют разные пути введения лекарственного средства в организм. Их можно разделить на 2 большие группы: энтеральный (через желудочно-кишечный тракт), парентеральный (минуя желудочно-кишечный тракт). К энтеральным путям введения относят: пероральный (peros– через рот), сублингвальный (под язык), через зонд в желудок и двенадцатиперстную кишку, ректальный (через прямую кишку). К парентеральным путям введения относятся: накожный, внутрикожный, подкожный, внутримышечный, внутривенный, внутриартериальный, внутрисердечный, под оболочки мозга, ингаляционный, интрастернальный (в грудину). Каждый из путей введения имеет свои преимущества и недостатки.

Самый распространенный путь введения – это через рот (пероральный). Этот путь удобный, простой, не требуется стерильность препаратов. Всасывание лекарственного вещества идет частично в желудке, частично в кишечнике. Однако некоторые лекарственные вещества могут разрушаться под действием желудочного сока. В этом случае лекарственное вещество помещают в капсулы, которые не разрушаются желудочным соком. Под языком лекарственное средство всасывается быстро, минует печень и не вступает в контакт с содержимым желудка и кишечника (Нитроглицерин). При ректальном способе введения (суппозитории, клизмы) лекарственное вещество быстро всасывается, частично минуя печень. Однако, далеко не все препараты хорошо всасываются из слизистой прямой кишки, а некоторые препараты могут раздражать слизистые оболочки.

Из парентеральных путей введения чаще используют: под кожу, внутримышечный, внутривенный. Быстрый эффект наступает при внутривенном пути введения. Однако к трудностям парентеральных способов введения относят: болезненность укола, стерильность препаратов и шприцов, необходимость медицинского персонала для проведения инъекций.

Поступив в организм, лекарственное вещество должно всосаться. Всасывание (абсорбция) – это процесс поступления лекарственного вещества в кровеносную или лимфатическую систему из места введения. Основные механизмы всасывания: пассивная диффузия, облегченная диффузия, активный транспорт, пиноцитоз. Факторы, влияющие на всасывание лекарственного вещества при приеме внутрь: растворимость, лекарственная форма, pHжелудка и кишечника, активность ферментов желудочно-кишечного тракта, перистальтика желудочно-кишечного тракта, прием пищи, мальабсорбция, дисбактериоз.

После всасывания лекарственного вещества в кровь оно будет циркулировать там, в «свободной» или «связанной» форме. «Свободная» форма (не связана с белками крови) растворима в водной фазе плазмы крови. Эта форма легко проникает через стенку капилляров в ткани и оказывает фармакологический эффект. «Связанная» форма – это часть лекарственного вещества, которая связана с белками крови (чаще с альбуминами) и неспособна, проникать в ткани. Эта форма представляет собой как бы депо препарата и по мере выведения лекарственного вещества из организма отщепляется от белка и переходит в «свободную» форму. Следовательно: только «свободная» форма лекарственного вещества оказывает фармакологический эффект.

После всасывания в кровь лекарственное вещество подвергается распределению по органам и тканям. Распределение по органам и тканям чаще всего бывает неравномерным. Степень поступления в ту или иную ткань зависит от разных факторов: от молекулярной массы, от растворимости в воде и липидах, от степени диссоциации; от возраста, пола; от массы жировых депо; от функционального состояния печени, почек, сердца; от способности преодолевать гистогематические барьеры.

К гистогематическим барьерам относят: капиллярную стенку, гематоэнцефалический барьер, гематоофтальмический барьер, плацентарный барьер. Капилляры легко проницаемы для лекарственных веществ, так как стенка капилляров имеет широкие поры, через которые легко проходят водорастворимые вещества с молекулярной массой не больше инсулина (5 – 6 кДа). А жирорастворимые вещества диффундируют через мембрану клеток.

Гематоэнцефалический барьер – представляет собой капиллярную стенку, которая является многослойной мембраной (эндотелий, межуточное вещество и глиальные клетки головного и спинного мозга). Такая мембрана лишена пор. Через гематоэнцефалический барьер легко проникают липофильные вещества путем простой диффузии (например, тиопентал натрия – наркозное средство). Для полярных соединений (пенициллины, миорелаксанты) гематоэнцефалический барьер не проницаем. Гематоэнцефалический барьер гипоталамуса, гипофиза отличается повышенной проницаемостью для лекарственных веществ. Проницаемость гематоэнцефалического барьера повышается при менингите, арахноидите, гипоксии, черепно-мозговых травмах. Некоторые лекарственные препараты (кофеин, эуфиллин, лидаза) повышают проницаемость гематоэнцефалического барьера.

Гематоофтальмический барьер отделяет кровь капилляров от внутриглазной жидкости в камерах глаза. В камеры глаза хорошо проходят липофильные препараты.

Плацентарный барьер разделяет кровообращение матери и плода. На ранних стадиях беременности наблюдается большая порозность этого барьера и многие лекарства легко проникают в плод. Затем этот барьер «укрепляется» и приобретает свойства липидной мембраны. Но с 33 – 35-й недели беременности истончается плацента и значительно повышается проницаемость плацентарного барьера. Это создает опасную ситуацию для плода. Не проникают через плацентарный барьер крупномолекулярные вещества (инсулин, полиглюкин), а также гидрофильные ионизированные молекулы: миорелаксанты, ганглиблокаторы.

Следующий этап фармакокинетики – это элиминация лекарственного вещества. Элиминация (от латинского eliminatum– удалять) – удаление лекарств из организма путем биотрансформации и экскреции.

Биотрансформация – это метаболическое превращение лекарств, в результате которых они приобретают полярные группы, то есть уменьшается растворимость в липидах и возрастает растворимость в воде. Полярные метаболиты пригодны к удалению из организма. Для примера хочу сказать, что если бы не было метаболизма, то одна терапевтическая доза снотворного средства этаминала могла бы находиться в организме 100 лет. Биотрансформация лекарств чаще всего (90 – 95%) происходит в печени, реже в слизистой оболочке кишечника, почках, легких, коже, в крови. Наиболее изучен метаболизм лекарств в печени. Метаболизм в печени происходит: либо в эндоплазматическом ретикулуме гепатоцитов с помощью микросомальных оксидаз смешанной функции либо вне эндоплазматического ретикулума (в митохондриях) с помощью немикросомальных ферментов.

Можно выделить 2 фазы биотрансформации. Первая фаза включает 3 реакции:

    окисление

    восстановление

    гидролиз

В процессе этих реакций молекулы субстрата приобретают полярные группы (гидроксильные, аминные и другие), в результате чего метаболиты лекарственных веществ становятся водорастворимыми и пригодными для выведения. Приведу несколько примеров биотрансформации лекарств. Окислению подвергаются: алкоголь, фенобарбитал, морфин, эфедрин, хлорпромазин. Восстановлению подвергаются: пропранолол, хлорамфеникол, нитрофураны. Гидролизируют следующие лекарства: прокаин, новокаинамид, сердечные гликозиды.

Вторая фаза биотрансформации включает реакции конъюгации, (то есть соединения, синтеза). Лекарственное вещество или метаболиты первой фазы связываются с некоторыми эндогенными веществами и образуют различные конъюгаты (соединения) с глюкуроновой кислотой (глюкоронизирование), уксусной кислотой (реакция ацетилирование), сульфатом, глицином, глутатионом, реакция метилирования по кислороду, азоту, сере. Иногда бывает так, то у одного и того же вещества наблюдается несколько этапов конъюгации: вначале (например) с глицином, потом – с глюкуроновой кислотой и так далее. В результате реакций конъюгации образуются водорастворимые вещества, которые быстро выводятся из организма. Примеры типовых реакций конъюгации: ацетилирование (сульфаниламиды, фтивазид, анестезин, прокаин), глюкуронизация (пропранолол, морфин, левомицетин), связывание с сульфатом (метилдофа, фенол), связывание с аминокислотами, с глицином (салициловая кислота, никотиновая кислота), метилирование: по кислороду (дофамин), по азоту (никотинамид), по сере (унитиол).

В результате биотрансформации лекарственные вещества меняют свою биологическую активность. Могут быть следующие варианты изменения их активности: потеря активности (инактивация) – наиболее частый вид, активация – это повышение активности. Например: фталазол после гидролиза превращается в активное вещество – норсульфазол; уротропин превращается в организме в активный формальдегид, витамин Д гидроксилируется в активный диоксивитамин «Д». Модификация основного эффекта, когда в процессе биотрансформации появляются другие свойства. Например, кодеин в организме частично деметилируется и превращается в морфин.

В процессе метаболизма под влиянием лекарственных средств может происходить индукция (усиление) или ингибирование (торможение) активности микросомальных ферментов печени. К препаратам-индукторам относят: фенобарбитал и другие барбитураты, зиксорин, рифампицин, димедрол, бутадион, стероидные гормоны, верошпирон и другие. При курсовом назначении этих препаратов-индукторов их метаболизм ускоряется в 3 – 4 раза К препаратам-ингибиторам метаболизма относят: эритромицин, левомицетин.

Следующий этап фармакокинетики – это выведение (экскреция) лекарственных веществ из организма. Это заключительный этап фармакокинетики. Лекарственные вещества и их метаболиты экскретируются разными путями: почками (чаще всего), через желудочно-кишечный тракт, легкими, кожей, железами (слюнными, потовыми, слезными, молочными).

Механизмы выведения почками: клубочковая фильтрация (пассивный процесс), канальцевая секреция (активный процесс), канальцевая реабсорбция (пассивный процесс). Клубочковой фильтрации подвергаются водорастворимые вещества с молекулярной массой до 5000 дальтон. Они не должны быть связаны с белками плазмы крови. Пример фильтрации – стрептомицин. Канальцевая секреция лекарственных веществ и метаболитов происходит против градиента концентрации с затратой энергии. Могут секретироваться вещества, связанные с белками. Пример секреции: бензилпенициллин (85%). Канальцевая реабсорбция происходит в дистальных отделах канальцев путем пассивной диффузии по градиенту концентрации. Благодаря реабсорбции пролонгируется (удлиняется) действие препарата (фенобарбитал, димедрол, диазепам).

Экскреция с желчью. Многие полярные лекарственные средства, имеющие молекулярную массу 300 и выше, могут выводиться с желчью через мембрану гепатоцитов, а также путем активного транспорта с помощью фермента глютатионтрансферазы. Степень связывания с белками плазмы крови значения не имеет. Неполярные лекарственные средства не экскретируются в желчь, но их полярные метаболиты довольно быстро попадают в желчь. Вместе с желчью лекарственные вещества попадают в кишечник и выделяются с калом. Некоторые препараты могут подвергаться в кишечнике деконъюгации с помощью кишечной микрофлоры. В этом случае эти препараты могут повторно всасываться (например, дигитоксин). Это явление называется энтерогепатическая (печеночно-кишечная) циркуляция.

Экскреция легкими. Некоторые лекарственные вещества могут выделяться частично или полностью через легкие. Это - летучие и газообразные вещества (например, средства для наркоза), этиловый спирт, камфора и другие.

Экскреция грудными железами. Некоторые препараты могут легко проникать в грудные железы и экскретироваться с молоком матери. В молоко легко проникают препараты, хорошо связывающиеся с жиром: теофиллин, левомицетин, сульфаниламиды, ацетилсалициловая кислота, препараты лития. Возможны токсические эффекты проникающих в грудное молоко лекарственных средств на грудного младенца. Особенно опасны: противоопухолевые препараты, препараты лития, изониазид, левомицетин; препараты, вызывающие аллергию (бензилпенициллин).

Экскреция со слюной. Некоторые препараты могут попасть в слюну путем пассивной диффузии. Чем более липофильный препарат, тем легче он проникает в слюну. Если концентрация препарата в слюне корригирует с концентрацией его в плазме крови, то в этих случаях легко определять концентрацию препарата в слюне. Например, антипирин, пармидин. Частично выделяются со слюной: парацетамол, лидокаин, литий, фенацетин, хинидин, теофиллин, пармидин, антипирин, клофелин.

Термины фармакокинетики.

Элиминация – суммарная величина биотрансформации + экскреции. В результате элиминации лекарственное вещество теряет активность (метаболизирует) и выводится из организма.

Квота-элиминация (или коэффициент элиминации) – это суточная потеря препарата, выраженная в процентах к препарату, содержащегося в организме. Квота-элиминация: строфантина 50%, дигитоксина 7%. Эта величина важна для режима дозирования.

Период полувыведения (полужизни, полуэлиминации) – это время, за которое концентрация препарата в плазме крови снижается наполовину (50%). Обозначается: Т½ в часах и минутах. Чем больше Т½, тем медленнее выводится препарат и его реже надо вводить в организм во избежаний побочных явлений. Эта величина зависит от: пути введения препарата, дозы, возраста; функции печени, почек.

Клиренс – это количественная оценка скорости экскреции лекарственных веществ. Почечный клиренс равен объему плазмы крови, который полностью очищается (освобождается) от лекарственного вещества за единицу времени (л/мин, мл/мин).

Общий клиренс – это объем плазмы крови, из которого за единицу времени выводится лекарственное вещество с мочой, желчью, легкими и другими путями. Это суммарная величина.

Важным параметром фармакокинетики является биодоступность лекарственного вещества – это доля введенной внутрь дозы вещества, которая поступает в общий кровоток в активной форме (в процентах). Биодоступность зависит от: полноты всасывания лекарственного вещества, степени инактивации в желудочно-кишечном тракте, интенсивности метаболизма при первичном прохождении через печень.

Вам надо знать 2 термина: первичное прохождение через печень лекарственного вещества, вторичное поступление в печень. «Первичное прохождение лекарственного вещества через печень» (или «метаболизм первого прохождения») применим для лекарственных препаратов, которые всасываются в желудке и тонком кишечнике, так как из этих органов лекарственное вещество попадает в воротную вену (venaeportae), а далее – в печень и только потом поступает в общий кровоток и разносится по органам и тканям. А оттуда лекарственное вещество вновь поступает в печень, где происходит окончательный метаболизм лекарственного вещества, то есть вторичное поступление в печень.

Таким образом, только при приеме лекарственного средства peros, оно дважды поступает в печень. при первом прохождении через печень может начаться метаболизм лекарственного вещества. Кроме того, некоторые лекарственные вещества начинают метаболизировать уже в желудке и кишечнике. весь комплекс процессов, приводящих к инактивации лекарственного вещества до его попадания в общий кровоток называется «пресистемной элиминацией». Биодоступность выражается в процентах. Если лекарственное вещество вводить внутривенно, то биодоступность будет почти всегда 100%. «Объем распределения» (Vd) – это параметр фармакокинетики, который характеризует степень захвата вещества тканями из плазмы крови (л/кг). Эту величину можно использовать для оценки характера распределения препарата в организме, то есть где больше накапливается вещество: в клетке или в межклеточной жидкости. Если объем распределения низкий (менее 1 – 2 л/кг), то большая часть препарата находится в межклеточной жидкости и наоборот. Знание величиныVdпригодится для оказания помощи при передозировке препарата.


Под метаболизмом (биотрансформацией) лекарственных препаратов понимают комплекс их превращений в организме, в результате которых образуются полярные водорастворимые вещества - метаболиты. В большинстве случаев метаболиты менее активны и менее токсичны исходных соединений. Но из правила есть исключения, когда метаболиты активнее исходных соединений.
Метаболизм лекарственных препаратов в организме определяется генетическими факторами, полом, возрастом, особенностями питания, заболеванием и его тяжестью, факторами внешней среды, а также путем поступления в организм.
При пероральном приеме лекарственный препарат, прежде всего, всасывается слизистой пищеварительного канала, и уже здесь начинает претерпевать метаболические изменения. Некоторые лекарственные препараты метаболизируются не только ферментами пищеварительного канала, но и кишечными бактериями.
Принимаемые внутрь лекарственные препараты из-за поступления в системный кровоток через печень делятся на два типа, соответственно, с высоким и низким печеночным клиренсом. Для первого типа характерна высокая степень экстракции гепа- тоцитами из крови, которая в значительной мере зависит от скорости внутрипеченочного кровотока. Печеночный клиренс лекарственных препаратов второго типа определяется не скоростью кровотока, но емкостью ферментативных систем печени и скоростью их связывания с белками печени. Печени принадлежит исключительное место в метаболизме лекарственных препаратов, поэтому всегда необходимо уделять исключительное внимание ее функциональному состоянию. При заболеваниях печени метаболизм лекарственных препаратов всегда нарушается, и обычно замедляется. При циррозе печени их биодоступность возрастает из-за развития портокавальных анастомозов и поступления части в системный кровоток, минуя печень. В таких случаях может увеличиваться их токсическое влияние на мозг.
Метаболизм лекарственного препарата при приеме внутрь до попадания в системный кровоток называют «эффектом первого прохождения». Чем меньше доза лекарственного препарата, тем большая часть его метаболизируется до попадання в системный кровоток, и наоборот. С некоторой дозы участвующие в метаболизме лекарственного препарата ферментативные системы насыщаются, а его биодоступность возрастает.
Различают несинтетический (оксиление, восстановление, гидролиз) и синтетический типы и/или этапы реакций метаболизма. Несинтетический тип (этап I) делится на реакции, катализируемые микросомальными (эндоплазматического ретикулума) ферментами и немикросомальными ферментами. В основе синтетического (этап II) типа реакций лежит конъюнгация лекарственных средств с эндогенными субстратами (глюкуроновая кислота, сульфаты, глицин, глутатион, метильные группы и вода) че - рез гидроксильную, карбоксильную, аминную и эпоксидную функциональные группы. После завершения реакции молекула препарата становится более полярной и легче выводится из организма.
Микросомальному метаболизму подвергаются в первую очередь жирорастворимые лекарственные препараты, легко проникающие через мембраны клеток в эндоплазматический ретикулум, где они связываются с одним из цитохромов системы Р446-Р455, являющимися первичными компонентами окислительной ферментной системы. Скорость метаболизма определяется концентрацией цитохромов, соотношением их форм, сродством к субстрату, концентрацией цитохром-с-редуктазы и скоростью восстановления комплекса «лекарственный препарат - цитохром Р450». На нее влияет также конкурирование эндогенных и экзогенных субстратов. Дальнейшее окисление происходит под влиянием оксидазы и редуктазы при участии НАДФ и молекулярного кислорода. Оксидазы катализируют дезаминирование первичных и вторичных аминов, гидроксилирование боковых цепей и ароматических колец гетероциклических соединений, а также образование сульфоксидов и деалкилирования. Микросомальные ферменты контролируют также конъюгацию лекарственных препаратов с глюкуроновой кислотой. Этим путем из организма выводятся эстрогены, глюкокортикоиды, прогестерон, наркотические анальгетики, салицилаты, барбитураты, антибиотики, др.
Активность микросомальных ферментов разными веществами может активироваться и подавляяться. Активность цитохромов падает под влиянием ксикаина, совкаина, бенкаина, индерала, вискена, эралдина, др., и возрастает под влиянием барбитуратов, фенилбутазона, кофеина, этанола, никотина, бутадиона, нейролептиков, амидопирина, хлорциклизина, димедрола, мепробамата, трициклических антидепрессантов, бензонала, хинина, кордиамина, др.
Немикросомальному метаболизму подвергается небольшое число лекарственных препаратов, как, например, ацетилсалициловая кислота и сульфаниламиды.
При несинтетическом типе метаболизма из некоторых ксенобиотиков могут образовываться активные реакционно-способные вещества, включая эпоксиды и азотсодержащие оксиды. Последние при недостаточности эпоксидгидраз и глутатионпер- оксидаз взаимодействуют со структурными и ферментными белками и повреждают их. Повреждение придает им свойства аутоантигенов и в результате запускаются аутоиммунные реакции с возможными канцерогенезом, мутагенезом, тератогенезом, др.
Что касается синтетического типа метаболизма с анаболической направленностью реакций и образованием конъюгатов с остатками различных кислот или других соединений, сульфатирование формируется к моменту рождения, метилирование - спустя месяц жизни, глюкуронидация - спустя два месяца, соединение с цистеином и глутатионом - через три мсяца, и с глицином - спустя шесть месяцев. При этом недостаточность одного из путей образования парных соединений частично может компенсироваться другими.

ФАРМАКОКИНЕТИКА (от греч. pharmakon - лекарство и kinetikos - приводящий в движение), изучает кинетич. закономерности процессов, происходящих с лек. ср-вом в . Осн. фармакокинетич. процессы: всасывание, распределение, и экскреция (выведение).

Основы фармакокинетики создавались учеными разных специальностей в разл. странах. В 1913 нем. биохимики Л. Михаэлис и M. Ментен предложили ур-ние кинетики ферментативных процессов, широко используемое в современной фармакокинетике для описания лек. ср-в (см. ). Швед, физиолога Э. Видмарк, Д. Тандберг (1924) и T. Теорелл (1937) применяли системы дифференциальных ур-ний при анализе разл. способов введения лек. ср-в. Амер. физиолог В. Гамильтон и другие (1931) использовали метод статистич. моментов для оценки параметров фармакокинетики по эксперим. данным. Основы лек. ср-в были заложены англ, биохимиками X. Бреем, В. Торпом и К. Уайтом (1951). Практич. аспекты применения фармакокинетики для фармако-терапии разрабатывали К. Лапп во (1948-56), А. ван Гемерт и др. в Дании (1950), Э. Крюгер-Тиммер (I960) и Ф. Дост (1953-68) в (последний - автор термина "фармакокинетика").

Развитие фармакокинетики до нач. 50-х гг. 20 в. сдерживалось отсутствием высокочувствит. и селективных методов анализа микроконцентраций лек. B-B в . средах и недостаточной компьютеризацией исследований. С решением этих проблем фармакокинетика получила дальнейшее развитие. В России развитие фармакокинетики началось в 60-х гг. и связано с именами В. А. Филова, В. H. Соловьева и В. П. Яковлева.

Ф армакокинетика содействует решению проблемы эффективности и безопасности фармакотерапии путем исследования зависимости терапевтич., токсич. и побочных эффектов лек. ср-в от их в месте действия или в анализируемой . среде (чаще всего в ) и расчету оптим. режимов введения препаратов для создания и поддержания оптим. лек. B-B.

Для определения микроконцентраций лек. B-B и продуктов их используют , спектральные, иммунохим., радиоизотопные и др. методы.

Всасывание. Во всех случаях, когда лек. ср-во вводится не в сосудистое русло, оно попадает в путем всасывания; в случае твердой формы сначала происходит (высвобождение), а затем лек. в-ва проникают в системный кровоток, чаще всего путем простой из места введения, а иногда с помощью активного транспорта. T. наз. пролонгированные (ретардированные) лек. формы обеспечивают медленное, контролируемое поступление лек. в-ва в .

При приеме внутрь лек. в-ва основного характера () всасываются обычно в тонком кишечнике (сублингвальные лек. формы всасываются из ротовой полости, ректальные -из прямой кишки), лек. в-ва нейтрального или кислого характера начинают всасываться уже в желудке.

Всасывание характеризуется скоростью и степенью всасывания (т. наз. биодоступностью). Степень всасывания - кол-во лек. в-ва (в % или в долях), к-рое попадает в при разл. способах введения. На всасывание сильно влияют лек. форма, а также др. факторы. При приеме внутрь многие лек. в-ва в процессе всасывания под действием (или к-ты желудочного сока) биотранс формируются в , в результате чего лишь часть лек. в-в достигает кровяного русла. Степень всасывания лек. в-ва из желудочно-кишечного тракта, как правило, снижается при приеме лекарства после еды.

Влияние лек. форм на всасывание, пути и способы введения лек. ср-в изучает спец. раздел фармакокинетики- "биофармация".

Распределение по органам и . В лек. в-во распределяется между , межклеточной и . Распределение зависит от относит. сродства лек. в-ва к биомакромолекулам и . Необходимое условие реализации фармакологич. действия лек. в-ва - его проникновение в ткани-мишени; напротив, попадание лек. в-ва в индифферентные снижает действующую и может привести к нежелат. побочным эффектам (напр., к ).

Для количеств, оценки распределения лек. в-ва делят на его начальную в ( , сыворотке), экстраполированную к моменту введения, или используют метод статистич. моментов. Получают условную величину объема распределения (объем , в к-ром нужно растворить , чтобы получить , равную кажущейся начальной ). Для нек-рых водорастворимых лек. в-в величина объема распределения может принимать реальные значения, соответствующие объему , внеклеточной или всей водной фазы . Для жирорастворимых лек. ср-в эти оценки могут превышать на 1-2 порядка реальный объем благодаря избират. кумуляции лек. в-ва жировыми и др. .

Экскреция. Лек. в-ва выводятся из с , калом, потом, слюной, с выдыхаемым . Выведение зависит от скорости доставки лек. в-ва в выделит. орган с и от собственно выделит. систем. Водорастворимые лек. в-ва выводятся, как правило, через почки. Этот процесс определяется алгебраич. суммой трех осн. процессов: гломерулярной (клубочковой) фильтрации, канальцевой и реабсорбции. Скорость фильтрации прямо пропорциональна своб. лек. в-ва в ; канальцевая реализуется насыщаемыми транспортными системами в нефроне и характерна для нек-рых орг. , и амфотерных соед.; реабсорбции могут подвергаться нейтральные формы лек. в-в. Полярные лек. в-ва с мол. м. более 300 выводятся преим. с и далее с калом: скорость выведения прямо пропорциональна потоку и отношению лек. в-ва в и . Остальные пути выделения менее интенсивны, но м. б. исследованы при изучении фармакокинетики. В частности, нередко анализируют содержание лек. в-ва в слюне, поскольку в слюне для мн. препаратов пропорциональна их в , исследуют также лек. в-в в грудном , что важно для оценки безопасности грудного вскармливания.

Математические модели. Для обработки и интерпретации фармакокинетич. эксперимента используют разл. варианты мат. . В т. наз. компартментальной (частевой, камерной) модели представлен как совокупность взаимосвязанных абстрактных частей (камер), между к-рыми и внутри к-рых происходят процессы распределения, и выведения лек. в-ва. При условии, что скорости этих процессов пропорциональны (или кол-ву) лек. в-ва в той части, где этот процесс происходит, изменение определяется ур-нием:

где n - число камер модели, A ij - предэкспоненциальные множители, a j - , t - время.

Принципиальные недостатки такой модели - неопределенность понятия "часть", невозможность строгой числа частей и параметров, погрешности в статистич. оценках последних.

Для решения задач прикладной фармакокинетики широко используют методы системного подхода и теории вероятности. В первом случае систему - лек. в-во рассматривают как целое ("черный "). Для оценки параметров применяют принцип материального баланса, т. е. равенства между кол-вами поступившего и выведенного лек. в-ва (после однократной ) или достижения равенства скоростей поступления и выведения лек. ср-ва (при длит. введении):

F·D=CL·AUC; F·R = CL·C ss

Метаболизм (биотрансформация) лекарственных веществ в организме. Экскреция и элиминация лекарств в организме

Биотрансформация (метаболизм) - изменение химической структуры лекарственных веществ и их физико-химических свойств под действием ферментов организма. Большинство лекарственных средств подвергается в организме биотрансформации. В неизмененном виде выделяются главным образом высокогидрофильные ионизированные соединения. Из липофильных веществ исключение составляют средства для ингаляционного наркоза, основная часть которых в химические реакции в организме не вступает. Они выводятся легкими в том же виде, в каком были введены. В биотрансформации лекарственных средств принимают участие многие ферменты, из которых важнейшая роль принадлежит микросомальным ферментам печени (находятся в эндоплазматической сети). Они метаболизируют чужеродные для организма липофильные соединения (разной структуры), превращая их в более гидрофильные. Субстратной специфичности у них нет. Существенное значение имеют и немик - росомальные ферменты разной локализации (печени, кишечника и других тканей, а также плазмы), особенно в случае инактивации гидрофильных веществ.

Выделяют два основных вида превращения лекарственных препаратов: 1 - метаболическую трансформацию и 2 - конъюгацию.

Метаболическая трансформация - это превращение веществ за счет окисления, восстановления и гидролиза. Многие липофильные соединения подвергаются окислению в печени под влиянием микросомальной системы ферментов, известных как оксидазы смешанных функций, или монооксигеназы. Основными компонентами этой системы являются цитохром Р-450-редуктаза и цитохром Р-450 - гемопротеин, который связывает молекулы лекарственного вещества и кислород в своем активном центре. Реакция протекает при участии НАДФН. В результате происходит присоединение одного атома кислорода к субстрату (лекарственному веществу) с образованием гидроксильной группы (реакция гидро-ксилирования).

RH + О 2 + НАДФН + Н + > ROH + Н 2 О + НАДФ + , где

RH - лекарственное вещество, a ROH - метаболит.

Оксидазы смешанных функций обладают низкой субстратной специфичностью. Известно много изоформ цитохрома Р-450 (Cytochrome Р-450, CYP), каждая из которых может метаболизировать несколько лекарственных веществ. Так, изо-форма CYP2C9 участвует в метаболизме варфарина, фенитоина, ибупрофена, CYP2D6 метаболизирует имипрамин, галоперидол, пропранолол, a CYP3A4 - карбамазепин, циклоспорин, эритромицин, нифедипин, верапамил и некоторые другие вещества. Окисление некоторых лекарственных веществ происходит под влиянием немикросомальных ферментов, которые локализованы в цитозоле или митохондриях. Для этих ферментов характерна субстратная специфичность, например, моноаминоксидаза А метаболизирует норадреналин, адреналин, серотонин, алкогольдегидрогеназа метаболизирует этиловый спирт до ацетальдегида.

Восстановление лекарственных веществ может происходить при участии микросомальных (хлорамфеникол) и немикросомальных ферментов (хлоралгидрат, налоксон).

Гидролиз лекарственных веществ осуществляется в основном немикросомальными ферментами (эстеразами, амидазами, фосфатазами) в плазме крови и тканях. При этом вследствие присоединения воды происходит разрыв эфирных, амидных и фосфатных связей в молекулах лекарственных веществ. Гидролизу подвергаются сложные эфиры - ацетилхолин, суксаметоний (гидролизуются при участии холинэстераз), амиды (прокаинамид), ацетилсалициловая кислота.

Метаболиты, которые образуются в результате несинтетических реакций, могут в отдельных случаях обладать более высокой активностью, чем исходные соединения. Примером повышения активности лекарственных веществ в процессе метаболизма является использование предшественников лекарств (пролекарства). Пролекарства фармакологически неактивны, но в организме они превращаются в активные вещества. Например, препарат для лечения неспецифического язвенного колита салазопиридазин под действием фермента азоредуктазы кишечника превращается в сульфапиридазин и 5-аминосалициловую кислоту, обладающие антибактериальным и противовоспалительным действием. Многие антигипертензивные средства, например ингибиторы ангиотензин-пре-вращающего фермента (эналаприл), гидролизуются в организме с образованием активных соединений. Пролекарства обладают рядом преимуществ. Очень часто с их помощью решаются проблемы с доставкой лекарственного вещества к месту его действия. Например, леводопа является предшественником дофамина, но в отличие от дофамина она проникает через гематоэнцефалический барьер в ЦНС, где под действием ДОФА-декарбоксилазы превращается в активное вещество - дофамин.

Иногда продукты метаболической трансформации оказываются более токсичными, чем исходные соединения. Так, токсические эффекты препаратов, содержащих нитрогруппы (метронидазол, нитрофурантоин), определяются промежуточными продуктами метаболического восстановления NО 2 -групп.

Конъюгация - это биосинтетический процесс, сопровождающийся присоединением к лекарственному веществу или его метаболитам ряда химических группировок или молекул биогенных соединений. В процессе биосинтетических реакций (конъюгация) к функциональным группировкам молекул лекарственных веществ или их метаболитов присоединяются остатки эндогенных соединений (глюкуроновой кислоты, глутатиона, глицина, сульфаты и др.) или высокополярные химические группы (ацетильные, метильные группы). Эти реакции протекают при участии ферментов (в основном, трансфераз) печени, а также ферментов других тканей (легкие, почки). Локализуются ферменты в микросомах или в цитозольной фракции.

Наиболее общей реакцией является конъюгация с глюкуроновой кислотой. Присоединение остатков глюкуроновой кислоты (образование глюкуронидов) происходит при участии микросомального фермента UDP-глюкуронилтрансферазы, обладающей низкой субстратной специфичностью, вследствие чего очень многие лекарственные вещества (а также некоторые экзогенные соединения, такие как кортикостероиды и билирубин) вступают в реакцию конъюгации с глюкуроновой кислотой. В процессе конъюгации образуются высокополярные гидрофильные соединения, которые быстро выводятся почками (многие метаболиты также подвергаются конъюгации). Конъюгаты, как правило, менее активны и токсичны, чем исходные лекарственные вещества.

Скорость биотрансформации лекарственных веществ зависит от многих факторов. В частности, активность ферментов, метаболизирующих лекарственные вещества, зависит от пола, возраста, состояния организма, одновременного назначения других лекарственных средств. У мужчин активность микросомальных ферментов выше, чем у женщин, так как синтез этих ферментов стимулируется мужскими половыми гормонами. Поэтому некоторые вещества метаболизируются быстрее у мужчин, чем у женщин.

В эмбриональном периоде отсутствует большинство ферментов метаболизма лекарственных веществ, у новорожденных в первый месяц жизни активность этих ферментов снижена и достигает достаточного уровня лишь через 1 - 6 мес. Поэтому в первые недели жизни не рекомендуется назначать такие лекарственные вещества, как хлорамфеникол (вследствие недостаточной активности ферментов замедлены процессы его конъюгации и проявляются токсические эффекты).

Активность ферментов печени снижается в старческом возрасте, вследствие чего уменьшается скорость метаболизма многих лекарственных веществ (лицам старше 60 лет такие препараты назначают в меньших дозах). При заболеваниях печени снижается активность микросомальных ферментов, замедляется биотрансформация некоторых лекарственных веществ и происходит усиление и удлинение их действия. У утомленных и ослабленных больных обезвреживание лекарственных веществ происходит медленнее.

Под действием некоторых лекарственных веществ (фенобарбитал, рифампицин, карбамазепин, гризеофульвин) может происходить индукция (увеличение скорости синтеза) микросомальных ферментов печени. В результате при одновременном назначении с индукторами микросомальных ферментов других препаратов (например, глюкокортикоидов, пероральных контрацептивов) повышается скорость метаболизма последних и снижается их действие. В некоторых случаях может увеличиваться скорость метаболизма самого индуктора, вследствие чего уменьшаются его фармакологические эффекты (карбамазепин).

Некоторые лекарственные вещества (циметидин, хлорамфеникол, кетоконазол, этанол) снижают активность метаболизирующих ферментов. Например, циметидин является ингибитором микросомального окисления и, замедляя метаболизм варфарина, может повысить его антикоагулянтный эффект и спровоцировать кровотечение. Известны вещества (фуранокумарины), содержащиеся в грейпфрутовом соке, которые угнетают метаболизм таких лекарственных веществ, как циклоспорин, мидазолам, алпразолам и, следовательно, усиливают их действие. При одновременном применении лекарственных веществ с индукторами или ингибиторами метаболизма необходимо корректировать назначаемые дозы этих веществ.

Скорость метаболизма некоторых лекарственных веществ определяется генетическими факторами. Появился раздел фармакологии - фармакогенетика, одной из задач которого является изучение патологии ферментов лекарственного метаболизма. Изменение активности ферментов часто является следствием мутации гена, контролирующего синтез данного фермента. Нарушение структуры и функции фермента называют энзимопатией (ферментопатией). При энзимопатиях активность фермента может быть повышена, и в этом случае процесс метаболизма лекарственных веществ ускоряется и их действие снижается. И наоборот, активность ферментов может быть снижена, вследствие чего разрушение лекарственных веществ будет происходить медленнее и действие их будет усиливаться вплоть до появления токсических эффектов.

Выведение (экскреция) из организма лекарств и продуктов их превращения происходит различными путями: через желудочно-кишечный тракт, легкие, молочные и другие железы, кожу. Однако основным путем выведения большинства лекарственных средств являются почки. Поэтому заболевание почек может привести к задержке лекарств в организме и вызвать более сильный и длительный эффект, вплоть до развития отравления. При заболеваниях почек назначение некоторых лекарств противопоказано. Усиливая выделительную функцию почек мочегонными средствами, можно ускорить выведение лекарственных веществ из организма (например, при отравлениях - форсированный диурез). На выведение лекарств почками в определенной степени влияет рН мочи. Так, при кислой реакции мочи улучшается выделение щелочных соединений (например алкалоидов) и затрудняется выделение лекарств кислого характера (например, барбитуратов, сульфаниламидов и т.д.). Назначением хлорида аммония можно «подкислить» мочу и тем самым ускорить выделение с мочой оснований, а гидрокарбонат натрия или другие соединения, которые изменяют реакцию мочи на щелочную, будут способствовать выделению из организма веществ кислого характера.

К подобному управлению реакцией мочи нередко прибегают при отравлениях. Если же при отравлении функция почек резко нарушена, и возникает угроза жизни, то в таких случаях к кровеносной системе человека подключают специальный аппарат («искусственная почка»), с помощью которого ядовитые вещества удаляются из крови.

Некоторые лекарства, которые плохо всасываются в желудочно-кишечном тракте, могут выводиться вместе с калом. Кроме того, слизистой оболочкой желудочно-кишечного тракта могут выделяться некоторые лекарства даже после их парентерального введения в организм (например морфин). Следовательно, промывание желудка в таких случаях вполне оправдано, хотя яд не был принят внутрь. Частичное выделение лекарственных веществ может происходить потовыми, слюнными и слезными железами. Легкими выделяются в основном летучие вещества (эфир, фторотан, этиловый спирт и др.).

Особое внимание следует обращать на возможность выделения лекарственных веществ молочными железами во время лактации и их поступления с молоком матери в организм ребенка. В связи с этим категорически противопоказано назначать кормящей грудью женщине препараты группы морфина, к которым дети очень чувствительны.

Следует отметить, что некоторые лекарства при длительном назначении могут раздражать ткани выделительных органов, вызывать их воспаление и даже повреждение. Так, препараты ртути повреждают почки, препараты брома могут вызвать воспаление потовых желез и т.д.

Элиминация лекарственных веществ представляет собой суммарный результат инактивации лекарств в тканях организма и экскреции их различными путями. Скорее всего элиминируются водорастворимые, ионизированные вещества, не связанные с белками плазмы. Медленнее элиминируют жирорастворимые вещества, связанные с белками крови. Для большинства лекарственных веществ скорость элиминации зависит от концентрации вещества (чем меньше концентрация вещества, тем меньше скорость элиминации). При этом кривая изменения концентрации вещества во времени имеет экспоненциальный характер. Такая элиминация соответствует кинетике 1-го порядка (в единицу времени элиминируется определенная часть вещества).

Основными параметрами, характеризующими процесс элиминации, являются константа скорости элиминации (k el , к e) и период полуэлиминации (t 1/2).

Константа скорости элиминации 1-го порядка показывает, какая часть вещества элиминируется из организма в единицу времени (размерность мин -1 , ч -1). Например, если k el какого-либо вещества, которое ввели внутривенно в дозе 100 мг, составляет 0,1 ч -1 , то через 1 ч количество вещества в крови будет равно 90 мг, а через 2 ч - 81 мг и т.д.

Немногие лекарственные вещества (этанол, фенитоин) элиминируются в соответствии с кинетикой нулевого порядка. Скорость такой элиминации не зависит от концентрации вещества и является постоянной величиной, т.е. в единицу времени элиминируется определенное количество вещества (например, за 1 ч элиминируется 10 г. чистого этанола). Связано это с тем, что при терапевтических концентрациях названных веществ в крови происходит насыщение ферментов, метаболизирующих эти вещества. Поэтому при увеличении концентрации таких веществ в крови скорость их элиминации не повышается.

Период полуэлиминации (t 1/2 , half-life) - время, за которое концентрация вещества в плазме крови снижается на 50%. Для большинства лекарственных веществ (для тех, элиминация которых подчиняется кинетике 1-го порядка) период полуэлиминации - величина постоянная в определенных пределах и не зависит от дозы лекарственного вещества. Поэтому, если за один период полуэлиминации из плазмы крови удаляется 50% внутривенно введенного лекарственного вещества, то за 2 периода - 75%, а за 3,3 периода - 90% (этот параметр используют для подбора интервалов между введениями вещества, необходимых для поддержания его постоянной концентрации в крови).

 

Возможно, будет полезно почитать: