Фабрика энергии в живой клетке. Энергетика живой клетки

ЭНЕРГИЯ КЛЕТКИ, ВОЗНИКАЮЩАЯ ВСЛЕДСТВИЕ ОКИСЛЕНИЯ ОРГАНИЧЕСКИХ ВЕЩЕСТВ

Превращение органических веществ в клетке. Органические вещества (углеводы, жиры, белки, витамины и др.) образуются в растительных клетках из углекислого газа, воды и минеральных солей.

Поедая растения, животные получают органические вещества в готовом виде. Энергия, запасенная в этих веществах, переходит вместе с ними в клетки гетеротрофных организмов.

В клетках гетеротрофных организмов энергия органических соединений при их окислении превращается в энергию АТФ . При этом гетеротрофные организмы выделяют углекислый газ и воду, которые вновь используются автотрофными организмами для процесса фотосинтеза.

Энергия, запасенная в АТФ, затрачивается на поддержание всех процессов жизнедеятельности: биосинтеза белков и других органических соединений, движения, роста и деления клеток.

Для всех клеток живых организмов характерна способность к преобразованию одного вида энергии в другой . В каких же клеточных органоидах осуществляются процессы извлечения энергии, запасенной в органических соединениях? Было установлено, что конечный этап распада и окисления молекул глюкозы до углекислого газа с освобождением энергии происходит в митохондриях.

Почему при окислении органических соединений освобождается энергия? Электроны в составе молекул органических соединений обладают большим запасом энергии, они как бы подняты в них на высокий энергетический уровень. Энергия высвобождается, когда электроны перемещаются с высокого уровня на более низкий уровень в своей или другой молекуле или атоме, которые способны быть приемниками электронов.

Таким приемником электронов служит кислород.

В этом и есть его главная биологическая роль. Для этого нам и нужен кислород воздуха.

Рассказывая о фотосинтезе, мы сравнивали электрон хлорофилла, .возбужденный светом, с камнем, поднятым на высоту: падая с высоты, он теряет энергию. Такое сравнение уместно и в случае окисления органических соединений.

Кислород, необходимый для процессов окисления, поступает в организм во время дыхания. Поэтому процесс дыхания непосредственно связан с биологическим окислением. Процессы биологического окисления органических веществ осуществляются в митохондриях.

Известно, что при горении органических веществ образуются углекислый газ и вода. При этом энергия выделяется в виде теплоты. Так, присоединяя кислород и окисляясь, горят, например, дрова, нефть, газ (метан).

Окисление органических веществ также сопровождается образованием углекислого газа и воды. Но биологическое окисление в корне отличается от горения. Процессы биологического окисления протекают ступенчато, при участии ряда ферментов. При сгорании органических веществ почти вся энергия выделяется в виде теплоты.

При биологическом окислении около 50% энергии органических веществ превращается в энергию АТФ, а также иных молекул-носителей энергии. Остальные 50% энергии окисления превращаются в теплоту. Поскольку ферментативные процессы окисления идут ступенчато, тепловая энергия выделяется постепенно и успевает рассеиваться во внешней среде, не повреждая чувствительных к нагреванию белков и других веществ клетки. В этом состоит главное отличие процессов окисления, протекающих в живых организмах, от горения.

Преизобильное ращение тучных дерев,
которые на бесплодном песку корень
свой утвердили, ясно изъявляет, что
жирными листами жирный тук из воздуха
впитывают...
М. В. Ломоносов

Как энергия запасается в клетке? Что такое метаболизм? В чем суть процессов гликолиза, брожения и клеточного дыхания? Какие процессы проходят на световой и темновой фазах фотосинтеза? Как связаны процессы энергетического и пластического обмена? Что представляет собой хемосинтез?

Урок-лекция

Способность преобразовывать одни виды энергии в другие (энергию излучения в энергию химических связей, химическую энергию в механическую и т. п.) относится к числу фундаментальных свойств живого. Здесь мы подробно рассмотрим, каким образом реализуются эти процессы у живых организмов.

АТФ - ГЛАВНЫЙ ПЕРЕНОСЧИК ЭНЕРГИИ В КЛЕТКЕ . Для осуществления любых проявлений жизнедеятельности клеток необходима энергия. Автотрофные организмы получают исходную энергию от Солнца в ходе реакций фотосинтеза, гетеротрофные же в качестве источника энергии используют органические соединения, поступающие с пищей. Энергия запасается клетками в химических связях молекул АТФ (аденозинтрифосфат) , которые представляют собой нуклеотид, состоящий из трех фосфатных групп, остатка сахара (рибозы) и остатка азотистого основания (аденина) (рис. 52).

Рис. 52. Молекула АТФ

Связь между фосфатными остатками получила название макроэргической, поскольку при ее разрыве выделяется большое количество энергии. Обычно клетка извлекает энергию из АТФ, отщепляя только концевую фосфатную группу. При этом образуется АДФ (аденозиндифосфат), фосфорная кислота и освобождается 40 кДж/моль:

Молекулы АТФ играют роль универсальной энергетической разменной монеты клетки. Они поставляются к месту протекания энергоемкого процесса, будь то ферментативный синтез органических соединений, работа белков - молекулярных моторов или мембранных транспортных белков и др. Обратный синтез молекул АТФ осуществляется путем присоединения фосфатной группы к АДФ с поглощением энергии. Запасание клеткой энергии в виде АТФ осуществляется в ходе реакций энергетического обмена . Он тесно связан с пластическим обменом , в ходе которого клетка производит необходимые для ее функционирования органические соединения.

ОБМЕН ВЕЩЕСТВ И ЭНЕРГИИ В КЛЕТКЕ (МЕТАБОЛИЗМ) . Метаболизм - совокупность всех реакций пластического и энергетического обмена, связанных между собой. В клетках постоянно идет синтез углеводов, жиров, белков, нуклеиновых кислот. Синтез соединений всегда идет с затратой энергии, т. е. при непременном участии АТФ. Источниками энергии для образования АТФ служат ферментативные реакции окисления поступающих в клетку белков, жиров и углеводов. В ходе этого процесса высвобождается энергия, которая аккумулируется в АТФ. Особую роль в энергетическом обмене клетки играет окисление глюкозы. Молекулы глюкозы претерпевают при этом ряд последовательных превращений.

Первый этап, получивший название гликолиз , проходит в цитоплазме клеток и не требует кислорода. В результате последовательных реакций с участием ферментов глюкоза распадается на две молекулы пировиноградной кислоты. При этом расходуются две молекулы АТФ, а высвобождающейся при окислении энергии достаточно для образования четырех молекул АТФ. В итоге энергетический выход гликолиза невелик и составляет две молекулы АТФ:

С 6 Н1 2 0 6 → 2С 3 Н 4 0 3 + 4Н + + 2АТФ

В анаэробных условиях (при отсутствии кислорода) дальнейшие превращения могут быть связаны с различными типами брожений .

Всем известно молочнокислое брожение (скисание молока), которое происходит благодаря деятельности молочнокислых грибков и бактерий. По механизму оно сходно с гликолизом, только окончательным продуктом здесь является молочная кислота. Этот тип окисления глюкозы происходит в клетках при дефиците кислорода, например в интенсивно работающих мышцах. Близко по химизму к молочнокислому и спиртовое брожение. Различие заключается в том, что продуктами спиртового брожения являются этиловый спирт и углекислый газ.

Следующий этап, в ходе которого пировиноградная кислота окисляется, до углекислого газа и воды, получил название клеточное дыхание . Связанные с дыханием реакции проходят в митохондриях растительных и животных клеток, и только при наличии кислорода. Это ряд химических превращений до образования конечного продукта - углекислого газа. На различных этапах такого процесса образуются промежуточные продукты окисления исходного вещества с отщеплением атомов водорода. При этом освобождается энергия, которая «консервируется» в химических связях АТФ, и образуются молекулы воды. Становится понятным, что именно для того, чтобы связать отщепленные атомы водорода, и требуется кислород. Данный ряд химических превращений достаточно сложный и происходит с участием внутренних мембран митохондрий, ферментов, белков-переносчиков.

Клеточное дыхание имеет очень высокую эффективность. Происходит синтез 30 молекул АТФ, еще две молекулы образуются при гликолизе, и шесть молекул АТФ - как результат превращений продуктов гликолиза на мембранах митохондрий. Всего в результате окисления одной молекулы глюкозы образуются 38 молекул АТФ:

C 6 H 12 O 6 + 6Н 2 0 → 6CO 2 + 6H 2 O + 38АТФ

В митохондриях происходят конечные этапы окисления не только сахаров, но также белков и липидов. Эти вещества используются клетками, главным образом когда подходит к концу запас углеводов. Вначале расходуется жир, при окислении которого выделяется существенно больше энергии, чем из равного объема углеводов и белков. Поэтому жир у животных представляет собой основной «стратегический резерв» энергетических ресурсов. У растений же роль энергетического резерва играет крахмал. При хранении он занимает значительно больше места, чем энергетически эквивалентное ему количество жира. Для растений это не служит помехой, поскольку они неподвижны и не носят, как животные, запасы на себе. Извлечь же энергию из углеводов можно гораздо быстрее, чем из жиров. Белки выполняют в организме многие важные функции, поэтому вовлекаются в энергетический обмен только при исчерпании ресурсов сахаров и жиров, например при длительном голодании.

ФОТОСИНТЕЗ . Фотосинтез - это процесс, в ходе которого энергия солнечных лучей преобразуется в энергию химических связей органических соединений. В растительных клетках связанные с фотосинтезом процессы протекают в хлоропластах. Внутри этой органеллы находятся системы мембран, в которые встроены пигменты, улавливающие лучистую энергию Солнца. Основной пигмент фотосинтеза - хлорофилл, который поглощает преимущественно синие и фиолетовые, а также красные лучи спектра. Зеленый свет при этом отражается, поэтому сам хлорофилл и содержащие его части растений кажутся зелеными.

В фотосинтезе выделяют две фазы - световую и темновую (рис. 53). Собственно улавливание и преобразование лучистой энергии происходит во время световой фазы. При поглощении квантов света хлорофилл переходит в возбужденное состояние и становится донором электронов. Его электроны передаются от одного белкового комплекса к другому по цепи переноса электронов. Белки этой цепи, как и пигменты, сосредоточены на внутренней мембране хлоропластов. При переходе электрона по цепи переносчиков он теряет энергию, которая используется для синтеза АТФ. Часть возбужденных светом электронов используется для восстановления НДФ (никотинамидадениндинуклеотифосфат), или НАДФ·Н.

Рис. 53. Продукты реакций световой и темновой фаз фотосинтеза

Под действием солнечного света в хлоропластах происходит также расщепление молекул воды - фотолиз ; при этом возникают электроны, которые возмещают потери их хлорофиллом; в качестве побочного продукта при этом образуется кислород:

Таким образом, функциональный смысл световой фазы заключается в синтезе АТФ и НАДФ·Н путем преобразования световой энергии в химическую.

Для реализации темновой фазы фотосинтеза свет не нужен. Суть проходящих здесь процессов заключается в том, что полученные в световую фазу молекулы АТФ и НАДФ·Н используются в серии химических реакций, «фиксирующих» СОг в форме углеводов. Все реакции темновой фазы осуществляются внутри хлоропластов, а освобождающиеся при «фиксации» углекислоты АДФ и НАДФ вновь используются в реакциях световой фазы для синтеза АТФ и НАДФ·Н.

Суммарное уравнение фотосинтеза имеет следующий вид:

ВЗАИМОСВЯЗЬ И ЕДИНСТВО ПРОЦЕССОВ ПЛАСТИЧЕСКОГО И ЭНЕРГЕТИЧЕСКОГО ОБМЕНА . Процессы синтеза АТФ происходят в цитоплазме (гликолиз), в митохондриях (клеточное дыхание) и в хлоропластах (фотосинтез). Все осуществляющиеся в ходе этих процессов реакции - это реакции энергетического обмена. Запасенная в виде АТФ энергия расходуется в реакциях пластического обмена для производства необходимых для жизнедеятельности клетки белков, жиров, углеводов и нуклеиновых кислот. Заметим, что темновая фаза фотосинтеза - это цепь реакций, пластического обмена, а световая - энергетического.

Взаимосвязь и единство процессов энергетического и пластического обмена хорошо иллюстрирует следующее уравнение:

При чтении этого уравнения слева направо получается процесс окисления глюкозы до углекислого газа и воды в ходе гликолиза и клеточного дыхания, связанный с синтезом АТФ (энергетический обмен). Если же прочесть его справа налево, то получается описание реакций темновой фазы фотосинтеза, когда из воды и углекислоты при участии АТФ синтезируется глюкоза (пластический обмен).

ХЕМОСИНТЕЗ . К синтезу органических веществ из неорганических, кроме фотоавтотрофов, способны и некоторые бактерии (водородные, нитрифицирующие, серобактерии и др.). Они осуществляют этот синтез за счет энергии, выделяющейся при окислении неорганических веществ. Их называют хемоавтотрофами. Эти хемосинтезирующие бактерии играют важную роль в биосфере. Например, нитрифицирующие бактерии переводят недоступные для усвоения растениями соли аммония в соли азотной кислоты, которые хорошо ими усваиваются.

Клеточный метаболизм составляют реакции энергетического и пластического обмена. В ходе энергетического обмена происходит образование органических соединений с макроэргическими химическими связями - АТФ. Необходимая для этого энергия поступает от окисления органических соединений в ходе анаэробных (гликолиз, брожение) и аэробных (клеточное дыхание) реакций; от солнечных лучей, энергия которых усваивается на световой фазе (фотосинтез); от окисления неорганических соединений (хемосинтез). Энергия АТФ расходуется на синтез необходимых клетке органических соединений в ходе реакций пластического обмена, к которым относятся и реакции темновой фазы фотосинтеза.

  • В чем заключаются различия между пластическим и энергетическим обменом?
  • Как преобразуется энергия солнечных лучей в световую фазу фотосинтеза? Какие процессы проходят в темновую фазу фотосинтеза?
  • Почему фотосинтез называют процессом отражения планетно-космического взаимодействия?

Нельзя понять, как устроен и «работает» организм человека, не разобравшись в том, как протекает обмен веществ в клетке. Каждая живая клетка должна постоянно добывать энергию. Энергия нужна ей, чтобы вырабатывать тепло и синтезировать (создавать) некоторые жизненно необходимые ей химические вещества, например белки или наследственное вещество. Энергия нужна клетке, и чтобы двигаться. Клетки тела , способные совершать движения, называются мышечными. Они могут сокращаться. Это и приводит в движение наши руки, ноги, сердце, кишечник. Наконец, энергия нужна, чтобы вырабатывать электрический ток: благодаря ему одни части тела «общаются» с другими. А обеспечивают связь между ними в первую очередь нервные клетки.

Откуда же клетки черпают энергию? Ответ таков: их выручает АТФ . Поясним. Клетки сжигают питательные вещества, и при этом выделяется какое-то количество энергии. Они используют ее, чтобы синтезировать особое химическое вещество, которое накапливает столь нужную им энергию. Это вещество называется аденозинтрифосфатом (сокращенно — АТФ). При расщеплении молекулы АТФ, содержащейся в клетке, выделяется накопленная в ней энергия. Благодаря этой энергии клетка может вырабатывать тепло, электрический ток, синтезировать химические вещества или совершать движения. Короче говоря, АТФ приводит в действие весь «механизм» клетки.

Так выглядит под микроскопом тонкий подкрашенный кружок ткани, взятой из гипофиза — мозгового придатка величиной с горошину. Красные, желтые, голубые, фиолетовые пятна, а также пятна телесного цвета — это клетки с ядрами . Каждый тип клеток гипофиза выделяет один или несколько жизненно важных гормонов.

А теперь подробнее поговорим о том, как клетки получают АТФ. Ответ мы уже знаем. Клетки сжигают питательные вещества. Делать это они могут двумя способами. Во-первых, сжигать углеводы, главным образом глюкозу, в отсутствие кислорода. При этом образуется вещество, которое химики называют пировиног-адной кислотой, а сам процесс расщепления углеводов — гликолизом. В результате гликолиза получается слишком мало АТФ: распад одной молекулы глюкозы сопровождается образованием лишь двух молекул АТФ. Гликолиз неэффективен — это древнейшая форма извлечения энергии. Вспомните, что жизнь зародилась в воде, то есть в среде, где кислорода было очень мало.

Во-вторых, клетки организма сжигают пировиноградную кислоту, жиры и белки в присутствии кислорода. Все перечисленные вещества содержат углерод и водород. В этом случае сжигание происходит в два этапа. Сначала клетка извлекает водород, затем сразу же начинает разлагать оставшийся углеродный каркас и избавляется от углекислого газа — через клеточную мембрану выводит его наружу. На втором этапе сжигается (окисляется) водород, извлеченный из питательных веществ. Образуется вода, и выделяется большое количество энергии. Клеткам хватает ее, чтобы синтезировать множество молекул АТФ (при окислении, например, двух молекул молочной кислоты, продукта восстановления пировиноградной кислоты, образуется 36 молекул АТФ).

Описание это кажется сухим и отвлеченным. На самом деле каждому из нас доводилось видеть, как происходит процесс выработки энергии. Помните телевизионные репортажи с космодромов о запуске ракет? Они взмывают ввысь за счет невероятного количества энергии, выделяемой при... окислении водорода, то есть при сжигании его в кислороде.

Космические ракеты высотой с башню устремляются в небо за счет громадной энергии, что выделяется при сжигании водорода в чистом кислороде. Эта же энергия поддерживает жизнь и в клетках нашего тела. Только в них реакция окисления протекает поэтапно. Кроме того, сначала вместо тепловой и кинетической энергии наши клетки создают клеточное топливо» — АТФ .

Их топливные баки заполнены жидкими водородом и кислородом. При запуске двигателей водород начинает окисляться и огромная ракета стремительно уносится в небо. Может быть, это кажется невероятным, и все-таки: та же энергия, что уносит ввысь космическую ракету, поддерживает и жизнь в клетках нашего тела.

Разве что в клетках не происходит никакого взрыва и из них не вырывается сноп пламени. Окисление совершается поэтапно, и потому вместо тепловой и кинетической энергии образуются молекулы АТФ.

Как клетка получает и использует энергию

Чтобы жить, надо работать. Эта житейская истина вполне приложима к любым живым существам. Все организмы: от одноклеточных микробов до высших животных и человека - непрерывно совершают различные типы работы. Таковы движение, то есть механическая работа при сокращении мышц животного или вращении жгутика бактерии; синтезы сложных химических соединений в клетках, то есть химическая работа; создание разности потенциалов между протоплазмой и внешней средой, то есть электрическая работа; перенос веществ из внешней среды, где их мало, внутрь клетки, где тех же веществ больше, то есть осмотическая работа. Помимо перечисленных четырех основных типов работы, можно упомянуть образование тепла теплокровными животными в ответ на понижение температуры окружающей среды, а также образование света светящимися организмами.

Что такое энергетический обмен

Все это требует затрат энергии, которая черпается из тех или иных внешних энергетических ресурсов. Первичным источником энергии для биосферы служит солнечный свет, усваиваемый фотосинтезирующими живыми существами: зелеными растениями и некоторыми бактериями. Создаваемые этими организмами биополимеры (углеводы, жиры и белки) могут затем использоваться в качестве «топлива» всеми остальными - гетеротрофными - формами жизни, к которым относятся животные, грибы и большинство видов бактерий.

Биополимеры пищи могут быть весьма разнообразны: это сотни различных белков, жиров и полисахаридов. В организме происходит распад этого «топлива». Прежде всего полимерные молекулы распадаются на составляющие их мономеры: белки расщепляются на аминокислоты, жиры - на жирные кислоты и глицерин, полисахариды - на моносахариды. Общее количество различных типов мономеров измеряется уже не сотнями, а десятками.

В дальнейшем мономеры превращаются в небольшие по величине моно-, ди- и трикарбоновые кислоты с числом углеродных атомов от 2 до 6. Этих кислот всего десять. Их превращение замкнуто в цикл, названный циклом Кребса в честь его первооткрывателя,

В цикле Кребса происходит окисление карбоновых кислот кислородом до углекислого газа и воды. Именно образование воды в результате реакции молекулярного кислорода с водородом, отщепленным от карбоновых кислот, сопровождается наибольшим выделением энергии, в то время как предшествующие процессы служат главным образом лишь подготовкой «топлива». Окисление водорода кислородом, то есть реакция гремучего газа (О2+2Н2 = 2Н20), в клетке разбито на несколько стадий, так что освобождающаяся при этом энергия выделяется не сразу, а порциями.

Так же порциями происходит освобождение энергии, поступающей в виде кванта света, в клетках организмов-фотосинтетиков.

Итак, в одной и той же клетке существует, во-первых, несколько реакций освобождения энергии и, во-вторых, множество процессов, идущих с поглощением энергии. Посредником этих двух систем, совокупность которых называется энергетическим обменом, служит особое вещество - аденозинтрифосфорная кислота (АТФ).

Из книги Следы невиданных зверей автора Акимушкин Игорь Иванович

Наука получает богатый улов кракенов Три ньюфаундлендских рыбака ловили рыбу недалеко от берега. На отмели они увидели какое-то большое животное, которое прочно «село на мель».Рыбаки подплыли ближе. Огромная и странная «рыба» делала отчаянные попытки уйти с мелкого

Из книги Семена разрушения. Тайная подоплека генетических манипуляций автора Энгдаль Уильям Фредерик

Глава 10. Ирак получает американские «семена демократии» «Мы в Ираке, чтобы сеять семена демократии, чтобы они там процветали и распространялись на весь регион авторитаризма». Джордж Буш–младший Экономическая шоковая терапия в американском стиле Когда Джордж

Из книги Племенное дело в служебном собаководстве автора Мазовер Александр Павлович

ГРУДНАЯ КЛЕТКА Форма грудной клетки изменяется в зависимости от конституционального типа собаки, степени ее развития и возраста. Грудная клетка, вмещающая дыхательные органы, сердце и главнейшие кровеносные сосуды, должна быть объемистой. Объем груди обусловлен длиной,

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Из книги Бегство от одиночества автора Панов Евгений Николаевич

Клетка - элементарная частица жизни Эти беглые замечания о способах выработки энергии в клетках многоклеточного организма и в бактериальных клетках акцентируют весьма существенные различия в важнейших аспектах их жизнедеятельности. Несходны эти два класса клеток и

Из книги Путешествие в страну микробов автора Бетина Владимир

Бактериальная клетка в цифрах Благодаря биофизике - одной из отраслей науки, с которой мы уже познакомились в начале этой главы, - были получены весьма интересные данные. Возьмем, например, шаровидную бактериальную клетку диаметром 0,5 мкм. Поверхность такой клетки

Из книги Тайны биологии автора Фреск Клас

Клетка-ловушка Тебе понадобятся: клетка-ловушка, приманка (зерна, сыр, хлеб, колбаса), доска или черепицаДлительность опыта: 1–2 дня.Время проведения: поздняя осень - ранняя весна. Твои действия: Купи клетку-ловушку любого типа или сделай ее сам. Для этого возьми

Из книги Естественные технологии биологических систем автора Уголев Александр Михайлович

5.2. Кишечная клетка Схема кишечной клетки представлена на рис. 26. Известно, что численность кишечных клеток составляет 1010, а соматических клеток взрослого человека- 10 15. Следовательно, одна кишечная клетка обеспечивает питание около 100 000 других клеток. Такая

Из книги Рассказы о биоэнергетике автора Скулачев Владимир Петрович

Зачем клетка обменивает натрий на калий? Мысль о двух формах конвертируемой энергии я высказал в 1975 году. Спустя два года эта точка зрения была поддержана Митчелом. А в группе А. Глаголева тем временем начались опыты по проверке одного из предсказаний этой новой

Из книги В поисках памяти [Возникновение новой науки о человеческой психике] автора Кандель Эрик Ричард

Из книги Энергия и жизнь автора Печуркин Николай Савельевич

Из книги Лестница жизни [Десять величайших изобретений эволюции] автора Лейн Ник

5.1. Главная ячейка жизни - клетка Определение жизни с позиций функционального подхода (метаболизм, размножение, расселение в пространстве) можно дать в следующей форме [Печуркин, 1982]: это открытая система, развивающаяся на основе матричного автокатализа под влиянием

Из книги Биология. Общая биология. 10 класс. Базовый уровень автора Сивоглазов Владислав Иванович

Глава 4. Сложная клетка Ботаник - это тот, кто умеет давать одинаковые названия одинаковым растениям и разные названия разным, причем так, чтобы в этом мог разобраться каждый”, - писал великий шведский систематик Карл Линней (сам ботаник). Это определение может поразить

Из книги автора

Глава 2. Клетка ТЕМЫ История изучения клетки. Клеточная теория Химический состав клетки Строение эукариотической и прокариотической клеток Реализация наследственной информации в клетке ВирусыУдивительный и загадочный мир окружает нас, жителей планеты,

Из книги автора

10. Эукариотическая клетка. Цитоплазма. Органоиды Вспомните!Каковы основные положения клеточной теории?Какие выделяют типы клеток в зависимости от расположения генетического материала?Назовите известные вам органоиды клетки. Какие функции они выполняют?В § 4 мы уже

Из книги автора

12. Прокариотическая клетка Вспомните!В чём заключаются принципиальные отличия в строении прокариотических и эукариотических клеток?Какова роль бактерий в природе?Разнообразие прокариот. Царство прокариот в основном представлено бактериями, наиболее древними

АТФ – главный переносчик энергии в клетке. Для осуществления любых проявлений жизнедеятельности клеток необходима энергия. Автотрофные организмы получают исходную энергию от солнца в ходе реакций фотосинтеза, гетеротрофные же в качестве источника энергии используют органические соединения, поступающие с пищей. Энергия запасается клетками в химических связях молекул АТФ (аденозинтрифосфат ), которые представляют собой нуклеотид, состоящий из трех фосфатных групп, остатка сахара (рибозы) и остатка азотистого основания (аденина).

Связь между фосфатными остатками получила название макроэргической, поскольку при ее разрыве выделяется большое количество энергии. Обычно клетка извлекает энергию из АТФ, отщепляя только концевую фосфатную группу. При этом образуется АДФ (аденозиндифосфат), фосфорная кислота и освобождается 40 кДж/моль.

Молекулы АТФ играют роль универсальной энергетической разменной монеты клетки. Они поставляются к месту протекания энергоемкого процесса, будь ферментативный синтез органических соединений, работа белков-молекулярных моторов или мембранных транспортных белков и др. Обратный синтез молекул АТФ осуществляется путем присоединения фосфатной группы к АДФ с поглощением энергии. Запасание клеткой энергии в виде АТФ осуществляется в ходе реакций энергетического обмена. Он тесно связан с пластическим обменом, в ходе которого клетка производит необходимые для ее функционирования органические соединения.

Обмен веществ и энергии в клетке (метаболизм).

Метаболизмом обозначают совокупность всех реакций пластического и энергетического обмена, связанных между собой. В клетках постоянно идет синтез углеводов, сложных жиров, нуклеиновых кислот. Одним из важнейших процессов в пластическом обмене является биосинтез белков. Синтез соединений в ходе реакций пластического обмена всегда энергозатратен и идет при непременном участии АТФ.

Одним из источников энергии для образования АТФ служит ферментативное расщепление поступающих в клетку органических соединений (белков, жиров и углеводов). В ходе этого процесса высвобождается энергия, которая аккумулируется в АТФ. Особую роль в энергетическом обмене клетки играет расщепление глюкозы. Этот сахар синтезируется в результате реакций фотосинтеза и может накапливаться в клетках в виде полисахаридов: крахмала и гликогена. По мере необходимости полисахариды распадаются, а молекулы глюкозы претерпевают ряд последовательных превращений.

Первый этап, получивший название гликолиз, проходит в цитоплазме клеток и не требует кислорода. В результате последовательных реакций с участием ферментов глюкоза распадается на две молекулы пировиноградной кислоты . При этом задействуются две молекулы АТФ, а высвобождающейся при расщеплении химических связей энергии хватает на производство четырех молекул АТФ. В итоге энергетический выход гликолиза невелик и составляет две молекулы АТФ:

С 6 Н 12 О 6 → 2С 3 Н 4 О 3 + 4Н + + 2АТФ

В анаэробных условиях (при отсутствии кислорода) дальнейшие превращения связаны с различными типами брожений .

Всем известно молочнокислое брожение (скисание молока), которое проходит благодаря деятельности молочнокислых грибков и бактерий. По механизму оно сходно с гликолизом, только окончательным продуктом здесь является молочная кислота. Этот тип брожения проходит в клетках при дефиците кислорода, например, в интенсивно работающих мышцах. Близко к молочному и спиртовое брожение . Различие заключается лишь в том, что продуктами при спиртового брожения являются этиловый спирт и углекислый газ.

Следующий этап, в ходе которого пировиноградная кислота окисляется до углекислого газа и воды, получил название клеточного дыхания . Связанные с дыханием реакции проходят в митохондриях растительных и животных клеток и только при наличии кислорода. Во внутренней среде митохондрий происходит ряд химических превращений вплоть до конечного продук-та – углекислого газа. При этом на различных этапах этого процесса образуются промежуточные продукты распада исходного вещества с отщеплением атомов водорода. Атомы водорода, в свою очередь, участвуют в ряде других химических реакций, итогом которых является выделение энергии и «консервация» ее в химических связях АТФ и образование молекул воды. Становится понятным, что именно для того, чтобы связать отщепленные атомы водорода, и нужен кислород. Данный ряд химических превращений достаточно сложный и происходит с участием внутренних мембран митохондрий, ферментов, белков-переносчиков.

Клеточное дыхание имеет чрезвычайно высокую эффективность. Происходит энергетический синтез 30 молекул АТФ, еще две молекулы образуются при гликолизе и шесть молекул АТФ образуются как результат превращений на мембранах митохондрий продуктов гликолиза. Всего в результате окисления одной молекулы глюкозы образуется 38 молекул АТФ:

С 6 Н 12 О 6 + 6О 2 → 6СО 2 + 6Н 2 О + 38АТФ

В митохондриях проходят конечные этапы окисления не только сахаров, но и других органических соединений – белков и липидов. Эти вещества используются клетками, главным образом, когда подходит к концу запас углеводов. Вначале расходуется жир, при окислении которого выделяется существенно больше энергии, чем из равного объема углеводов и белков. Поэтому жир у животных представляет собой основной «стратегический резерв» энергетических ресурсов. У растений же роль энергетического резерва играет крахмал. При хранении он занимает значительно больше места, чем энергетически эквивалентное ему количество жира. Для растений это не служит помехой, поскольку они неподвижны и не носят, как животные, запасы на себе. Извлечь же энергию из углеводов можно гораздо быстрее, чем из жиров. Белки выполняют в организме многие важные функции, поэтому вовлекаются в энергетический обмен только при исчерпании ресурсов сахаров и жиров, например, при длительном голодании.

Фотосинтез. Фотосинтез – это процесс, в ходе которого энергия солнечных лучей преобразуется в энергию химических связей органических соединений. В растительных клетках связанные с фотосинтезом процессы протекают в хлоропластах. Внутри этой органеллы находятся системы мембран в которые встроены пигменты, улавливающие лучистую энергию солнца. Основной пигмент фотосинтеза – хлорофилл, который поглощает преимущественно синие и фиолетовые, а также красные лучи спектра. Зеленый свет при этом отражается, поэтому сам хлорофилл и содержащие его части растений кажутся зелеными.

Различают хлорофиллы a , b , c , d , формулы которых имеют незначительные отличая. Главный из них – хлорофилл a , без него фотосинтез невозможен. Остальные хлорофиллы, называемые вспомогательными, способны улавливать свет несколько иной волны, чем хлорофилл a , что расширяет спектр поглощения света при фотосинтезе. Ту же роль играют и каротиноиды, воспринимающие кванты синего и зеленого света. В разных группах растительных организмов распределение дополнительных хлорофиллов неодинаково, что используется в систематике.

Собственно улавливание и преобразование лучистой энергии происходит во время световой фазы . При поглощении квантов света хлорофилл переходит в возбужденное состояние и становится донором электронов. Его электроны передаются от одного белкового комплекса к другому по цепи переноса электронов. Белки этой цепи, как и пигменты, сосредоточены на внутренней мембране хлоропластов. При переходе электрона по цепи переносчиков он теряет энергию, которая используется для синтеза АТФ.

Под действием солнечного света в хлоропластах происходит также расщепление молекул воды – фотолиз, при этом возникают электроны, которые возмещают потери их хлорофиллом; в качестве побочного продукта, при этом образуется кислород.

Таким образом, функциональный смысл световой фазы заключается в синтезе АТФ и НАДФ·Н путем преобразования световой энергии в химическую.

Из всех улавливающих кванты света пигментов только хлорофилл a способен передавать электроны в цепь переноса. Остальные пигменты сначала передают энергию возбужденных светом электронов хлорофиллу a , а от него уже начинается описанная выше цепочка реакций световой фазы.

Для реализации темновой фазы фотосинтеза свет не нужен. Суть проходящих здесь процессов заключается в том, что полученные в световую фазу молекулы используются в серии химических реакций, «фиксирующих» СО 2 в форме углеводов. Все реакции темновой фазы осуществляются внутри хлоропластов, а освобождающиеся при «фиксации» углекислоты вещества вновь используются в реакциях световой фазы.

Суммарное уравнение фотосинтеза имеет вид:

6СО 2 + 6Н 2 О –→ С 6 Н 12 О 6 + 6О 2

Взаимосвязь и единство процессов пластического и энергетического обмена. Процессы синтеза АТФ происходят в цитоплазме (гликолиз), в митохондриях (клеточное дыхание) и в хлоропластах (фотосинтез). Все осуществляющиеся в ходе этих процессов реакции – это реакции энергетического обмена. Запасенная в виде АТФ энергия, расходуется в реакциях пластического обмена для производства необходимых для жизнедеятельности клетки белков, жиров, углеводов и нуклеиновых кислот. Заметим, что темновая фаза фотосинтеза – это цепь реакций пластического обмена, а световая – энергетического.

 

Возможно, будет полезно почитать: