Что такое математическая модель. Виды математических моделей

Что такое математическая модель?

Понятие математической модели.

Математическая модель - очень простое понятие. И очень важное. Именно математические модели связывают математику и реальную жизнь.

Говоря простым языком, математическая модель - это математическое описание любой ситуации. И всё. Модель может быть примитивной, может быть и суперсложной. Какая ситуация, такая и модель.)

В любом (я повторяю - в любом! ) деле, где нужно чего-нибудь посчитать да рассчитать - мы занимаемся математическим моделированием. Даже если и не подозреваем об этом.)

Р = 2·ЦБ + 3·ЦМ

Вот эта запись и будет математической моделью расходов на наши покупки. Модель не учитывает цвет упаковки, срок годности, вежливость кассиров и т.п. На то она и модель, а не реальная покупка. Но расходы, т.е. то, что нам надо - мы узнаем точно. Если модель правильная, конечно.

Представлять, что такое математическая модель полезно, но этого мало. Самое главное - уметь эти модели строить.

Составление (построение) математической модели задачи.

Составить математическую модель - это значит, перевести условия задачи в математическую форму. Т.е. превратить слова в уравнение, формулу, неравенство и т.д. Причём превратить так, чтобы эта математика строго соответствовала исходному тексту. Иначе у нас получится математическая модель какой-то другой, неведомой нам задачи.)

Говоря конкретнее, нужно

Задач в мире - бесконечное количество. Поэтому предложить чёткую пошаговую инструкцию по составлению математической модели любой задачи - невозможно.

Но можно выделить три основных момента, на которые нужно обратить внимание.

1. В любой задаче есть текст, как ни странно.) В этом тексте, как правило, имеется явная, открытая информация. Числа, значения и т.п.

2. В любой задаче имеется скрытая информация. Это текст, который предполагает наличие дополнительных знаний в голове. Без них - никак. Кроме того, математическая информация частенько скрывается за простыми словами и... проскакивает мимо внимания.

3. В любой задаче должно быть дана связь данных между собой. Эта связь может быть дана открытым текстом (что-то равно чему-то), а может быть и скрыта за простыми словами. Но простые и понятные факты частенько упускаются из виду. И модель никак не составляется.

Сразу скажу: чтобы применить эти три момента, задачу приходится читать (и внимательно!) несколько раз. Обычное дело.

А теперь - примеры.

Начнём с простой задачки:

Петрович вернулся с рыбалки и гордо предъявил семье улов. При ближайшем рассмотрении оказалось, что 8 рыбин родом из северных морей, 20% всех рыбин - из южных, а из местной реки, где рыбачил Петрович - нет ни одной. Сколько всего рыбин купил Петрович в магазине "Морепродукты"?

Все эти слова нужно превратить в какое-то уравнение. Для этого нужно, повторюсь, установить математическую связь между всеми данными задачи.

С чего начинать? Сначала вытащим из задачи все данные. Начнём по порядочку:

Обращаем внимание на первый момент.

Какая здесь явная математическая информация? 8 рыбин и 20%. Не густо, да нам много и не надо.)

Обращаем внимание на второй момент.

Ищем скрытую информацию. Она здесь есть. Это слова: "20% всех рыбин ". Здесь нужно понимать, что такое проценты и как они считаются. Иначе задача не решается. Это как раз та дополнительная информация, которая должна быть в голове.

Здесь ещё имеется математическая информация, которую совершенно не видно. Это вопрос задачи: "Сколько всего рыбин купил..." Это ведь тоже какое-то число. И без него никакая модель не составится. Поэтому обозначим это число буквой "х". Мы пока не знаем, чему равен икс, но такое обозначение очень нам пригодится. Подробнее, что брать за икс и как с ним обращаться, написано в уроке Как решать задачи по математике? Вот так сразу и запишем:

х штук - общее количество рыб.

В нашей задаче южные рыбы даны в процентах. Надо их перевести в штуки. Зачем? Затем, что в любой задаче модели надо составлять в однотипных величинах. Штуки - так всё в штуках. Если даны, скажем часы и минуты - всё переводим во что-нибудь одно - или только часы, или только минуты. Не суть важно во что. Важно, чтобы все величины были однотипными.

Возвращаемся к раскрытию информации. Кто не знает, что такое процент, никогда не раскроет, да... А кто знает, тот сразу скажет, что проценты здесь от общего числа рыб даны. А нам это число неизвестно. Ничего не выйдет!

Общее количество рыб (в штуках!) мы не зря буквой "х" обозначили. Посчитать южных рыб в штуках не получится, но записать-то мы сможем? Вот так:

0,2·х штук - количество рыб из южных морей.

Вот теперь мы скачали всю информацию с задачи. И явную, и скрытую.

Обращаем внимание на третий момент.

Ищем математическую связь между данными задачи. Эта связь настолько проста, что многие её не замечают... Такое часто бывает. Здесь полезно просто записать собранные данные в кучку, да и посмотреть, что к чему.

Что у нас есть? Есть 8 штук северных рыб, 0,2·х штук - южных рыб и х рыб - общее количество. Можно связать эти данные как-то воедино? Да легко! Общее количество рыб равно сумме южных и северных! Ну кто бы мог подумать...) Вот и записываем:

х = 8 + 0,2х

Вот это уравнение и будет математической моделью нашей задачи.

Прошу заметить, что в этой задаче нас не просят ничего складывать! Это мы сами, из головы, сообразили, что сумма южных и северных рыб даст нам общее количество. Вещь настолько очевидная, что проскакивает мимо внимания. Но без этой очевидности математическую модель не составить. Вот так.

Теперь уже можно применить всю мощь математики для решения этого уравнения). Именно для этого и составлялась математическая модель. Решаем это линейное уравнение и получаем ответ.

Ответ: х=10

Составим математичесскую модель ещё одной задачки:

Спросили Петровича: "А много ли у тебя денег?" Заплакал Петрович и отвечает: "Да всего чуть-чуть. Если я потрачу половину всех денег, да половину остатка, то всего-то один мешок денег у меня и останется..." Сколько денег у Петровича?

Опять работаем по пунктам.

1. Ищем явную информацию. Тут её не сразу и обнаружишь! Явная информация - это один мешок денег. Есть ещё какие-то половинки... Ну, это во втором пункте разберём.

2. Ищем скрытую информацию. Это половинки. Чего? Не очень понятно. Ищем дальше. Есть ещё вопрос задачи: "Сколько денег у Петровича?" Обозначим количество денег буквой "х" :

х - все деньги

И вновь читаем задачу. Уже зная, что у Петровича х денег. Вот тут уже и половинки сработают! Записываем:

0,5·х - половина всех денег.

Остаток будет тоже половина, т.е. 0,5·х. А половину от половины можно записать так:

0,5·0,5·х = 0,25х - половина остатка.

Теперь вся скрытая информация выявлена и записана.

3. Ищем связь между записанными данными. Здесь можно просто читать страдания Петровича и записывать их математически):

Если я потрачу половину всех денег ...

Запишем этот процесс. Всех денег - х. Половина - 0,5·х . Потратить - это отнять. Фраза превращается в запись:

х - 0,5·х

да половину остатка...

Отнимем ещё половину остатка:

х - 0,5·х - 0,25х

то всего-то один мешок денег у меня и останется...

А вот и равенство нашлось! После всех вычитаний один мешок денег остаётся:

х - 0,5·х - 0,25х = 1

Вот она, математическая модель! Это опять линейное уравнение, решаем, получаем:

Вопрос на соображение. Четыре - это чего? Рубля, доллара, юаня? А в каких единицах у нас деньги в математической модели записаны? В мешках! Значит, четыре мешка денег у Петровича. Тоже неплохо.)

Задачки, конечно, элементарные. Это специально, чтобы уловить суть составления математической модели. В некоторых задачах может быть гораздо больше данных, в которых легко запутаться. Это часто бывает в т.н. компетентностных задачах. Как вытаскивать математическое содержание из кучи слов и чисел показано на примерах

Ещё одно замечание. В классических школьных задачах (трубы заполняют бассейн, куда-то плывут катера и т.п.) все данные, как правило, подобраны очень тщательно. Там выполняются два правила:
- информации в задаче хватает для её решения,
- лишней информации в задаче не бывает.

Это подсказка. Если осталась какая-то неиспользованная в математической модели величина - задумайтесь, нет ли ошибки. Если данных никак не хватает - скорее всего, не вся скрытая информация выявлена и записана.

В компетентностных и прочих жизненных задачах эти правила строго не соблюдаются. Нету подсказки. Но и такие задачи можно решать. Если, конечно, потренироваться на классических.)

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

В предложенной вашему вниманию статье мы предлагаем примеры математических моделей. Кроме этого, мы обратим внимание на этапы создания моделей и разберем некоторые задачи, связанные с математическим моделированием.

Еще один наш вопрос - это математические модели в экономике, примеры, определение которых мы рассмотрим немного позже. Начать наш разговор мы предлагаем с самого понятия «модель», кратко рассмотрим их классификацию и перейдем к основным нашим вопросам.

Понятие «модель»

Мы часто слышим слово «модель». Что же это такое? Данный термин имеет множество определений, вот только три из них:

  • специфический объект, который создается для получения и хранения информации, отражающий некоторые свойства или характеристики и так далее оригинала данного объекта (этот специфический объект может выражаться в разной форме: мысленный, описание при помощи знаков и так далее);
  • еще под моделью подразумевается отображение какой-либо конкретной ситуации, жизненной или управленческой;
  • моделью может служить уменьшенная копия какого-либо объекта (они создаются для более подробного изучения и анализа, так как модель отражает структуру и взаимосвязи).

Исходя из всего, что было сказано ранее, можно сделать небольшой вывод: модель позволяет подробно изучить сложную систему или объект.

Все модели можно классифицировать по ряду признаков:

  • по области использования (учебные, опытные, научно-технические, игровые, имитационные);
  • по динамике (статические и динамические);
  • по отрасли знаний (физические, химические, географические, исторические, социологические, экономические, математические);
  • по способу представления (материальные и информационные).

Информационные модели, в свою очередь, делятся на знаковые и вербальные. А знаковые - на компьютерные и некомпьютерные. Теперь перейдем к подробному рассмотрению примеров математической модели.

Математическая модель

Как не трудно догадаться, математическая модель отражает какие-либо черты объекта или явления при помощи специальных математических символов. Математика и нужна для того, чтобы моделировать закономерности окружающего мира на своем специфическом языке.

Метод математического моделирования зародился достаточно давно, тысячи лет назад, вместе с появлением данной науки. Однако толчок для развития данного способа моделирования дало появление ЭВМ (электронно-вычислительных машин).

Теперь перейдем к классификации. Ее так же можно провести по некоторым признакам. Они представлены в таблице ниже.

Мы предлагаем остановиться и подробнее рассмотреть последнюю классификацию, так как она отражает общие закономерности моделирования и цели создаваемых моделей.

Дескриптивные модели

В данной главе мы предлагаем остановиться подробнее на дескриптивных математических моделях. Для того чтобы было все предельно понятно, будет приведен пример.

Начнем с того, что этот вид можно назвать описательным. Это связано с тем, что мы просто делаем расчеты и прогнозы, но никак не можем повлиять на исход события.

Ярким примером описательной математической модели является вычисление траектории полета, скорости, расстояния от Земли кометы, которая вторглась в просторы нашей Солнечной системы. Эта модель является описательной, так как все полученные результаты могут только предупредить нас о какой-либо опасности. Повлиять на исход события, увы, мы не можем. Однако, основываясь на полученных расчетах, можно предпринять какие-либо меры для сохранения жизни на Земле.

Оптимизационные модели

Сейчас мы немного поговорим об экономико-математических моделях, примерами которых могут служить разные сложившиеся ситуации. В данном случае речь идет о моделях, которые помогают найти верный ответ в определенных условиях. Они обязательно имеют некие параметры. Чтобы стало предельно понятно, рассмотрим пример из аграрной части.

У нас есть зернохранилище, но зерно очень быстро портится. В этом случае нам необходимо правильно подобрать температурный режим и оптимизировать процесс хранения.

Таким образом, мы можем дать определение понятию «оптимизационная модель». В математическом смысле это система уравнений (как линейных, так и нет), решение которой помогает найти оптимальное решение в конкретной экономической ситуации. Пример математической модели (оптимизационной) мы рассмотрели, но хочется еще добавить: данный вид относится к классу экстремальных задач, они помогают описать функционирование экономической системы.

Отметим еще один нюанс: модели могут носить разный характер (см. таблицу ниже).

Многокритериальные модели

Сейчас предлагаем вам поговорить немного о математической модели многокритериальной оптимизации. До этого мы привели пример математической модели оптимизации процесса по какому-либо одному критерию, но что делать, если их много?

Ярким примером многокритериальной задачи служит организация правильного, полезного и одновременно экономного питания больших групп людей. С такими задачами часто встречаются в армии, школьных столовых, летних лагерях, больницах и так далее.

Какие критерии нам даны в данной задаче?

  1. Питание должно быть полезным.
  2. Расходы на пищу должны быть минимальными.

Как видите, эти цели совсем не совпадают. Значит, при решении задачи необходимо искать оптимальное решение, баланс между двумя критериями.

Игровые модели

Говоря об игровых моделях, необходимо понимать понятие «теория игр». Если говорить просто, то данные модели отражают математические модели настоящих конфликтов. Только стоит понимать, что, в отличие от реального конфликта, игровая математическая модель имеет свои определенные правила.

Сейчас будет приведен минимум информации из теории игр, которая поможет вам понять, что такое игровая модель. И так, в модели обязательно присутствуют стороны (две или более), которых принято называть игроками.

Все модели имеют некие характеристики.

Игровая модель может быть парной или множественной. Если у нас есть два субъекта, то конфликт парный, если больше - множественный. Также можно выделить антагонистическую игру, ее еще называют игрой с нулевой суммой. Это модель, в которой выигрыш одного из участников равняется проигрышу другого.

Имитационные модели

В данном разделе мы обратим внимание на имитационные математические модели. Примерами задач могут служить:

  • модель динамики численности микроорганизмов;
  • модель движения молекул, и так далее.

В данном случае мы говорим о моделях, которые максимально приближены к реальным процессам. По большому счету, они имитируют какое-либо проявление в природе. В первом случае, например, мы можем моделировать динамику численности муравьев в одной колонии. При этом можно наблюдать за судьбой каждой отдельной особи. В данном случае математическое описание используют редко, чаще присутствуют письменные условия:

  • через пять дней женская особь откладывает яйца;
  • через двадцать дней муравей погибает, и так далее.

Таким образом, используются для описания большой системы. Математическое заключение - это обработка полученных статистических данных.

Требования

Очень важно знать, что к данному виду модели предъявляют некоторые требования, среди которых - приведенные в таблице ниже.

Универсальность

Это свойство позволяет использовать одну и ту же модель при описании однотипных групп объектов. Важно отметить, что универсальные математические модели совершенно не зависят от физической природы исследуемого объекта

Адекватность

Здесь важно понимать, что данное свойство позволяет максимально правильно воспроизводить реальные процессы. В задачах эксплуатации очень важно данное свойство математического моделирования. Примером модели может служить процесс оптимизации использования газовой системы. В данном случае сопоставляются расчетные и фактические показатели, в результате проверяется правильность составленной модели

Точность

Данное требование подразумевает совпадение значений, которые мы получаем при расчете математической модели и входных параметров нашего реального объекта

Экономичность

Требование экономичности, предъявляемое к любой математической модели, характеризуется затратами на реализацию. Если работа с моделью осуществляется ручным способом, то необходимо рассчитать, сколько времени уйдет на решение одной задачи при помощи данной математической модели. Если речь идет об автоматизированном проектировании, то рассчитываются показатели затрат времени и памяти компьютера

Этапы моделирования

Всего в математическом моделировании принято выделять четыре этапа.

  1. Формулировка законов, связывающих части модели.
  2. Исследование математических задач.
  3. Выяснение совпадений практических и теоретических результатов.
  4. Анализ и модернизация модели.

Экономико-математическая модель

В этом разделе кратко осветим вопрос Примерами задач могут служить:

  • формирование производственной программы выпуска мясной продукции, обеспечивающей максимальную прибыль производства;
  • максимизация прибыли организации путем расчета оптимального количества выпуска столов и стульев на мебельной фабрике, и так далее.

Экономико-математическая модель отображает экономическую абстракцию, которая выражена при помощи математических терминов и знаков.

Компьютерная математическая модель

Примерами компьютерной математической модели являются:

  • задачи гидравлики при помощи блок-схем, диаграмм, таблиц, и так далее;
  • задачи на механику твердого тела, и так далее.

Компьютерная модель - это образ объекта или системы, представленный в виде:

  • таблицы;
  • блок-схемы;
  • диаграммы;
  • графика, и так далее.

При этом данная модель отражает структуру и взаимосвязи системы.

Построение экономико-математической модели

Мы уже ранее сказали о том, что такое экономико-математическая модель. Пример решения задачи будет рассмотрен прямо сейчас. Нам необходимо произвести анализ производственной программы для выявления резерва повышения прибыли при сдвиге в ассортименте.

Полностью рассматривать задачу мы не будем, а только построим экономико-математическую модель. Критерий нашей задачи - максимизация прибыли. Тогда функция имеет вид: Л=р1*х1+р2*х2…, стремящееся к максимуму. В данной модели р - это прибыль за единицу, х - это количество производимых единиц. Далее, основываясь на построенной модели, необходимо произвести расчеты и подвести итог.

Пример построения простой математической модели

Задача. Рыбак вернулся со следующим уловом:

  • 8 рыб - обитатели северных морей;
  • 20% улова - обитатели южных морей;
  • из местной реки не обнаружилось ни одной рыбы.

Сколько рыб он купил в магазине?

Итак, пример построения математической модели данной задачи выглядит следующим образом. Обозначаем общее количество рыб за х. Следуя условию, 0,2х - это количество рыб, обитающих в южных широтах. Теперь объединяем всю имеющуюся информацию и получаем математическую модель задачи: х=0,2х+8. Решаем уравнение и получаем ответ на главный вопрос: 10 рыб он купил в магазине.

Пример 1.5.1.

Пусть некоторый экономический регион производит несколько (n) видов продуктов исключительно своими силами и только для населения данного региона. Предполагается, что технологический процесс отработан, а спрос населения на эти товары изучен. Надо определить годовой объем выпуска продуктов, с учетом того, что этот объем должен обеспечить как конечное, так и производственное потребление.

Составим математическую модель этой задачи. По ее условию даны: виды продуктов, спрос на них и технологический процесс; требуется найти объем выпуска каждого вида продукта.

Обозначим известные величины:

c i – спрос населения на i -й продукт (i =1,...,n ); a ij – количество i -го продукта, необходимое для выпуска единицы j -го продукта по данной технологии (i =1,...,n ; j =1,...,n );

х i – объем выпуска i -го продукта (i =1,...,n ); совокупность с =(c 1 ,..., c n ) называется вектором спроса, числа a ij – технологическими коэффициентами, а совокупность х =(х 1 ,..., х n ) – вектором выпуска.

По условию задачи вектор х распределяется на две части: на конечное потребление (вектор с ) и на воспроизводство (вектор х-с ). Вычислим ту часть вектора х которая идет на воспроизводство. По нашим обозначениям для производства х j количества j-го товара идет a ij · х j количества i -го товара.

Тогда сумма a i1 · х 1 +...+ a in · х n показывает ту величину i -го товара, которая нужна для всего выпуска х =(х 1 ,..., х n ).

Следовательно, должно выполняться равенство:

Распространяя это рассуждение на все виды продуктов, приходим к искомой модели:

Решая эту систему из n линейных уравнений относительно х 1 ,...,х n и найдем требуемый вектор выпуска.

Для того, чтобы написать эту модель в более компактной (векторной) форме, введем обозначения:

Квадратная (
) -матрицаА называется технологической матрицей. Легко проверить, что наша модель теперь запишется так:х-с=Ах или

(1.6)

Мы получили классическую модель «Затраты – выпуск », автором которой является известный американский экономист В. Леонтьев.

Пример 1.5.2.

Нефтеперерабатывающий завод располагает двумя сортами нефти: сортом А в количестве 10 единиц, сортом В - 15 единиц. При переработке из нефти получаются два материала: бензин (обозначим Б ) и мазут (М ). Имеется три варианта технологического процесса переработки:

I : 1ед.А + 2ед.В дает 3ед.Б + 2ед.М

II: 2ед.А + 1ед.В дает 1ед.Б + 5ед.М

III : 2ед.А + 2ед.В дает 1ед.Б + 2ед.М

Цена бензина - 10 долл. за единицу, мазута - 1 долл. за единицу.

Требуется определить наиболее выгодное сочетание технологических процессов переработки имеющегося количества нефти.

Перед моделированием уточним следующие моменты. Из условия задачи следует, что «выгодность» технологического процесса для завода следует понимать в смысле получения максимального дохода от реализации своей готовой продукции (бензина и мазута). В связи с этим понятно, что «выбор (принятие) решения» завода состоит в определении того, какую технологию и сколько раз применить. Очевидно, что таких возможных вариантов достаточно много.

Обозначим неизвестные величины:

х i – количество использованияi -го технологического процесса(i=1,2,3) . Остальные параметры модели (запасы сортов нефти, цены бензина и мазута)известны .

Теперь одно конкретное решение завода сводится к выбору одного вектора х =(х 1 2 3 ) , для которого выручка завода равна(32х 1 +15х 2 +12х 3 ) долл. Здесь 32 долл. – это доход, полученный от одного применения первого технологического процесса (10 долл. ·3ед.Б + 1 долл. ·2ед.М = 32 долл.). Аналогичный смысл имеют коэффициенты 15 и 12 для второго и третьего технологических процессов соответственно. Учет запаса нефти приводит к следующим условиям:

для сорта А :

для сорта В :,

где в первом неравенстве коэффициенты 1, 2, 2 – это нормы расхода нефти сорта А для одноразового применения технологических процессов I ,II ,III соответственно. Коэффициенты второго неравенства имеют аналогичный смысл для нефти сорта В.

Математическая модель в целом имеет вид:

Найти такой вектор х = (х 1 2 3 ) , чтобы максимизировать

f(x) =32х 1 +15х 2 +12х 3

при выполнении условий:

Сокращенная форма этой записи такова:

при ограничениях

(1.7)

Мы получили так называемую задачу линейного программирования.

Модель (1.7.) является примером оптимизационной модели детерминированного типа (с вполне определенными элементами).

Пример1.5.3.

Инвестору требуется определить наилучший набор из акций, облигаций и других ценных бумаг для приобретения их на некоторую сумму с целью получения определенной прибыли с минимальным риском для себя. Прибыль на каждый доллар, вложенный в ценную бумагу j - го вида, характеризуется двумя показателями: ожидаемой прибылью и фактической прибылью. Для инвестора желательно, чтобы ожидаемая прибыль на один доллар вложений была для всего набора ценных бумаг не ниже заданной величины b .

Заметим, что для правильного моделирования этой задачи от математика требуются определенные базовые знания в области портфельной теории ценных бумаг.

Обозначим известные параметры задачи:

n – число разновидностей ценных бумаг; а j – фактическая прибыль (случайное число) от j-го вида ценной бумаги; – ожидаемая прибыль отj -го вида ценной бумаги.

Обозначим неизвестные величины :

y j - средства, выделенные для приобретения ценных бумаг вида j .

По нашим обозначениям вся инвестированная сумма выражается как . Для упрощения модели введем новые величины

.

Таким образом, х i - это доля от всех средств, выделяемая для приобретения ценных бумаг видаj .

Ясно, что

Из условия задачи видно, что цель инвестора - достижение определенного уровня прибыли с минимальным риском. Содержательно риск - это мера отклонения фактической прибыли от ожидаемой. Поэтому его можно отождествить с ковариацией прибыли для ценных бумаг вида i и вида j. Здесь М - обозначение математического ожидания.

Математическая модель исходной задачи имеет вид:

при ограничениях

,
,
,
. (1.8)

Мы получили известную модель Марковица для оптимизации структуры портфеля ценных бумаг.

Модель (1.8.) является примеров оптимизационной модели стохастического типа (с элементами случайности).

Пример1.5.4.

На базе торговой организации имеется n типов одного из товаров ассортиментного минимума. В магазин должен быть завезен только один из типов данного товара. Требуется выбрать тот тип товара, который целесообразно завести в магазин. Если товар типа j будет пользоваться спросом, то магазин от его реализации получит прибыльр j , если же он не будет пользоваться спросом - убытокq j .

Перед моделированием обсудим некоторые принципиальные моменты. В данной задаче лицом, принимающим решение (ЛПР), является магазин. Однако исход (получение максимальной прибыли) зависит не только от его решения, но и от того, будет ли завезенный товар пользоваться спросом, т. е. будет ли выкуплен населением (предполагается, что по какой-то причине у магазина нет возможности изучить спрос населения). Поэтому население может рассматриваться как второе ЛПР, выбирающее тип товара согласно своего предпочтения. Наихудшим для магазина «решением» населения является: «завезенный товар не пользуется спросом». Так что, для учета всевозможных ситуаций, магазину нужно считать население своим «противником» (условно), преследующим противоположную цель – минимизировать прибыль магазина.

Итак, имеем задачу принятия решения с двумя участниками, преследующими противоположные цели. Уточним, что магазин выбирает один из типов товаров для продажи (всего n вариантов решений), а население - один из типов товаров, который пользуется наибольшим спросом (n вариантов решений).

Для составления математической модели нарисуем таблицу с n строками и n столбцами (всего n 2 клеток) и условимся, что строки соответствуют выбору магазина, а столбики - выбору населения. Тогда клетка (i, j) соответствует той ситуации, когда магазин выбирает i -й тип товара (i -ю строку), а население выбирает j -й тип товара (j- ю столбик). В каждую клетку запишем числовую оценку (прибыль или убыток) соответствующей ситуации с точки зрения магазина:

Числа q i написаны с минусом для отражения убытка магазина; в каждой ситуации «выигрыш» населения (условно) равен «выигрышу» магазина, взятому с обратным знаком.

Сокращенный вид этой модели таков:

(1.9)

Мы получили так называемую матричную игру. Модель (1.9.) является примером игровых моделей принятия решения.

Для построения математической модели необходимо:

  1. тщательно проанализировать реальный объект или процесс;
  2. выделить его наиболее существенные черты и свойства;
  3. определить переменные, т.е. параметры, значения которых влияют на основные черты и свойства объекта;
  4. описать зависимость основных свойств объекта, процесса или системы от значения переменных с помощью логико-математических соотношений (уравнения, равенства, неравенства, логико-математические конструкций);
  5. выделить внутренние связи объекта, процесса или системы с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций;
  6. определить внешние связи и описать их с помощью ограничений, уравнений, равенств, неравенств, логико-математических конструкций.

Математическое моделирование, кроме исследования объекта, процесса или системы и составления их математического описания, также включает:

  1. построение алгоритма, моделирующего поведение объекта, процесса или системы;
  2. проверка адекватности модели и объекта, процесса или системы на основе вычислительного и натурного эксперимента;
  3. корректировка модели;
  4. использование модели.

Математическое описание исследуемых процессов и систем зависит от:

  1. природы реального процесса или системы и составляется на основе законов физики, химии, механики, термодинамики, гидродинамики, электротехники, теории пластичности, теории упругости и т.д.
  2. требуемой достоверности и точности изучения и исследования реальных процессов и систем.

Построение математической модели обычно начинается с построения и анализа простейшей, наиболее грубой математической модели рассматриваемого объекта, процесса или системы. В дальнейшем, в случае необходимости, модель уточняется, делается ее соответствие объекту более полным.

Возьмем простой пример. Нужно определить площадь поверхности письменного стола. Обычно для этого измеряют его длину и ширину, а затем перемножают полученные числа. Такая элементарная процедура фактически обозначает следующее: реальный объект (поверхность стола) заменяется абстрактной математической моделью – прямоугольником. Прямоугольнику приписываются размеры, полученные в результате измерения длины и ширины поверхности стола, и площадь такого прямоугольника приближенно принимается за искомую площадь стола. Однако модель прямоугольника для письменного стола – это простейшая, наиболее грубая модель. При более серьезном подходе к задаче прежде, чем воспользоваться для определения площади стола моделью прямоугольника, эту модель нужно проверить. Проверки можно осуществить следующим образом: измерить длины противоположных сторон стола, а также длины его диагоналей и сравнить их между собой. Если, с требуемой степенью точности, длины противоположных сторон и длины диагоналей попарно равны между собой, то поверхность стола действительно можно рассматривать как прямоугольник. В противном случае модель прямоугольника придется отвергнуть и заменить моделью четырехугольника общего вида. При более высоком требовании к точности может возникнуть необходимость пойти в уточнении модели еще дальше, например, учесть закругления углов стола.

С помощью этого простого примера было показано, что математическая модель не определяется однозначно исследуемым объектом, процессом или системой .

ИЛИ (надо завтра уточнить)

Пути решения мат. Модели:

1, Построение м. на основе законов природы (аналитич. Метод)

2. Формальный путь с помощью статистическ. Обработки и результатов измерения (статист. Подход)

3. Построение м. на основе модели элементов (сложных систем)

1, Аналитический – использование при достаточном изуч. Общей закономерности изв. Моделей.

2. эксперимент. При отсутствии информ.

3. Имитационная м. – исследует св-ва объекта сст. В целом.


Пример построения математической модели.

Математи́ческая моде́ль - это математическое представление реальности.

Математическое моделирование - это процесс построения и изучения математических моделей.

Все естественные и общественные науки, использующие математический аппарат, по сути занимаются математическим моделированием: заменяют объект его математической моделью и затем изучают последнюю. Связь математической модели с реальностью осуществляется с помощью цепочки гипотез, идеализаций и упрощений. С помощью математических методов описывается, как правило, идеальный объект, построенный на этапе содержательного моделирования.

Зачем нужны модели?

Очень часто при исследовании какого либо объекта возникают трудности. Сам оригинал порой бывает недоступен, или его использование не целесообразно, или привлечение оригинала требует больших затрат. Все эти проблемы можно решить с помощью моделирования. Модель в определенном смысле может заменить исследуемый объект.

Простейшие примеры моделей

§ Фотографию можно назвать моделью человека. Для того чтобы узнать человека, достаточно видеть его фотографию.

§ Архитектор создал макет нового жилого района. Он может движением руки переместить высотное здание из одной части в другую. В реальности это было бы не возможно.

Типы моделей

Модели можно разделить на материальные" и идеальные . выше приведенные примеры являются материальными моделями. Идеальные модели часто имеют знаковую форму. Реальные понятия заменяются при этом некоторыми знаками, котое можно легко зафиксировать на бумаге, в памяти компьютера и т.д.

Математическое моделирование

Математическое моделирование относится к классу знакового моделирования. При этом модели могу создаваться из любых математических объектов: чисел, функций, уравнений и т.д.

Построение математической модели

§ Можно отметить несколько этапов построения математической модели:

1. Осмысление задачи, выделение наиболе важных для нас качеств, свойств, велечин и параметров.

2. Введение обозначений.

3. Составление системы ограничений, которым должны удовлетворять введенные величины.

4. Формулировка и запись условий,которым должно удовлетворять искомое оптимальное решение.

Процесс моделирования не заканчивается составлением модели,а только имначинается. Составив модель, выбирают метод нахождения ответа, решают задачу. после того как ответ найден сопостовляют его с реальностью. И возможно что ответ не удовлетворяет, в этом случае модель видоизменяют или даже выбирают совсем другую модель.

Пример математической модели

Задача

Производственное объединение, в которое входят две мебельные фабрики, нуждается в обновлении парка станков. Причем первой мебельной фабрике нужно заменить три станка, а второй-семь. Заказы можно разместить на двух станкостроительных заводах. Первый завод может изготовить не более 6 станков, а второй завод примет заказ если их будет не мение трех. Требуется определить как размещать заказы.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ - представление изучаемого в конкретно-научном знании явления или процесса на языке математических понятий. При этом ряд свойств исследуемого явления предполагается получить на пути исследования собственно математических характеристик модели. Построение М.м. чаще всего диктуется необходимостью иметь количественный анализ изучаемых явлений и процессов, без которого, в свою очередь, невозможно делать проверяемые на опыте предсказания об их протекании.

Процесс математического моделирования, как правило, проходит следующие этапы. На первом этапе происходит выявление связей между основными параметрами будущей М.м. Речь идет прежде всего о качественном анализе исследуемых явлений и формулировании закономерностей, связывающих основные объекты исследования. На этой основе проводится выявление объектов, допускающих количественное описание. Этап завершается построением гипотетической модели, другими словами, записью на языке математических понятий качественных представлений о взаимосвязях между основными объектами модели, которые могут быть количественно охарактеризованы.

На втором этапе происходит исследование собственно математических задач, к которым приводит построенная гипотетическая модель. Главное на данном этапе - получить в результате математического анализа модели эмпирически проверяемые теоретические следствия (решение прямой задачи). При этом нередки случаи, когда для построения и исследования М.м. в различных областях конкретно-научного знания применяется один и тот же математический аппарат (например, дифференциальные уравнения) и возникают однотипные, хотя и весьма нетривиальные в каждом конкретном случае, математические проблемы. Кроме того, на этом этапе огромное значение приобретает использование быстродействующей вычислительной техники (ЭВМ), которая дает возможность получить приближенное решение задач, часто невозможное в рамках чистой математики, с недоступной ранее (без применения ЭВМ) степенью точности.

Для третьего этапа характерна деятельность по выявлению степени адекватности построенной гипотетической М.м. тем явлениям и процессам, для исследования которых она была предназначена. А именно, в том случае, если все параметры модели были заданы, исследователи пытаются выяснить, насколько, в пределах точности наблюдений, их результаты согласуются с теоретическими следствиями модели. Отклонения, выходящие за пределы точности наблюдений, свидетельствуют о неадекватности модели. Однако нередки случаи, когда при построении модели ряд ее параметров остается

неопределенным. Задачи, в которых устанавливаются параметрические характеристики модели таким образом, чтобы теоретические следствия были сопоставимы в пределах точности наблюдений с результатами эмпирических проверок, называют обратными задачами.

На четвертом этапе с учетом выявления степени адекватности построенной гипотетической модели и появления новых экспериментальных данных об изучаемых явлениях происходит последующий анализ и модификация модели. Здесь принимаемое решение варьируется от безусловного отказа от применяемых математических средств до принятия построенной модели в качества фундамента для построения принципиально новой научной теории.

Первые М.м. появились еще в античной науке. Так, для моделирования Солнечной системы греческий математик и астроном Евдокс придал каждой планете четыре сферы, комбинация движения которых создавала гиппопеду - математическую кривую, сходную с наблюдаемым движением планеты. Поскольку, однако, эта модель не могла объяснить все наблюдаемые аномалии в движении планет, позже она была заменена эпициклической моделью Апполония из Перги. Последнюю модель использовал в своих исследованиях Гиппарх, а затем, подвергнув ее некоторой модификации, и Птолемей. Эта модель, как и ее предшественницы, основывалась на убеждении, что планеты совершают равномерные круговые движения, наложение которых и объясняло видимые нерегулярности. При этом следует отметить, что модель Коперника была принципиально новой лишь в качественном смысле (но не как М.м.). И лишь Кеплер, основываясь на наблюдениях Тихо Браге, построил новую М.м. Солнечной системы, доказав, что планеты движутся не по круговым, а по эллиптическим орбитам.

В настоящее время наиболее адекватными признаются М.м., построенные для описания механических и физических явлений. Об адекватности М.м. за пределами физики можно, за некоторыми исключениями, говорить с изрядной долей осторожности. Тем не менее, фиксируя гипотетичность, а часто и просто неадекватность М.м. в различных областях знания, не следует недооценивать их роль в развитии науки. Нередки случаи, когда даже далекие от адекватности модели в значительной мере организовывали и стимулировали дальнейшие исследования, наряду с ошибочными выводами содержавшими и те зерна истины, которые вполне оправдывали усилия, затраченные на разработку этих моделей.

Литература:

Математическое моделирование. М., 1979;

Рузавин Г.И. Математизация научного знания. М., 1984;

Тутубалин В.Н., Барабашева Ю.М., Григорян А.А., Девяткова Г.Н.,Угер Е. Г. Дифференциальные уравнения в экологии: историко-методологическое размышление // Вопросы истории естествознания и техники. 1997. №3.

Словарь философских терминов. Научная редакция профессора В.Г. Кузнецова. М., ИНФРА-М, 2007, с. 310-311.

 

Возможно, будет полезно почитать: